
1

Reviving Testing
Experience:
A New Era Begins
The Importance
of Accessibility
in the Modern
Digital World

A Learner's
First Few Steps
for Exploring
LLMs

Listen beyond the
pass and fail

The Road Less
Taken

November 2024

No. 01

2

SAVE THE DATE

SAVE THE DATE
SAVE THE DATE

SAVE THE DATE
SAVE THE DATE

NOV. 24 - 27, 2025

agiletestingdays.com

REGISTER NOW

3

EDITORIAL

Sometimes, life has a way of leading us back to
unfinished business. For a long time, I’ve wanted to
revive Testing Experience, but I needed that final
push to make it happen. Now, that moment has
arrived.

For those who remember Testing Experience from
its heyday between 2008 and 2014, welcome back!
And for our new readers, we’re thrilled to introduce
you to what we believe will become an essential
resource in the testing community. Back in its
prime, Testing Experience was a market leader, with
over 30,000 readers per issue and some editions
being downloaded more than 400,000 times over
the years.

This first issue of our new era is packed with
insightful articles from renowned speakers and
respected professionals in the field. For those
attending AgileTD, you’ll even have the chance to
meet some of these authors in person and discuss
their articles face-to-face.

While the idea to revive the magazine was mine, as
is often the case, the hard work was done by others.
I’ve gained a bit of a reputation for that! I want

to extend my heartfelt thanks to all the authors,
partners, and advertisers who made this print
edition possible. Your support is invaluable, and it’s
not something I take for granted. A special thank
you goes out to my incredible team at AgileTD,
especially Yalhen, Jana and Marc.

Testing Experience remains freely available, and our
aim is to keep it that way as long as we can sustain it
financially. In 2014, we had to stop publishing due
to the high costs involved. This time around, we
need your support to help this magazine reach the
wide audience it deserves. Please, share it with your
networks.

If you have a topic you’d like to see covered, feel free
to reach out to us at editorial@testingexperience.
media. You can visit the magazine’s website at
testingexperience.media

We hope this issue brings you joy and that you enjoy
reading it as much as we enjoyed putting it together.

With warm regards,
José

Reviving Testing Experience: A New Era Begins

SAVE THE DATE

SAVE THE DATE
SAVE THE DATE

SAVE THE DATE
SAVE THE DATE

NOV. 24 - 27, 2025

mailto:editorial@testingexperience.com

4

In all of our publications at trendig technology services
GmbH, we make every effort to respect all copyrights
of the chosen graphic and text materials. In the case
that we do not have our own suitable graphic or text,
we utilize those from public domains.

All brands and trademarks mentioned, where
applicable, registered by third parties are subject
without restriction to the provisions of ruling
labelling legislation and the rights of ownership of the
registered owners. The mere mention of a trademark
in no way allows the conclusion to be drawn that it is
not protected by the rights of third parties.

The copyright for published material created by
trendig technology services GmbH remains the
author’s property. No material in this publication may
be reproduced in any way or form without permission
from trendig technology services GmbH, including
other electronic or printed media.

The opinions mentioned within the articles and
contents herein do not necessarily express those of
the publisher. Only the authors are responsible for the
content of their articles.

EDITOR

trendig technology services GmbH
Kleiststraße 35
10787 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99

E-mail: hi@trendig.com
Website: www.trendig.com

EDITORIAL

José Díaz

LAYOUT & DESIGN

Yalhen Rudolph

WEBSITE

www.testingexperience.media

ARTICLES AUTHORS

editorial@testingexperience.media

ADVERTISEMENTS

editorial@testingexperience.media

PICTURE CREDITS

©All illustrations in the mazagine are designed by Freepik
©Cover designed by Freepik

Impressum

mailto:editorial@testingexperience.com

5

CONTENT

6

24

18

9

28

22

12

3316

Auto-Observability:
The Power of Observation
Alex Schladebeck

Listen Beyond
the Pass and Fail
Lena Pejgan Nyström

The Importance
of Feedback
Nicola Lindgren and Vernon Richards

TRIM Your
Automated Tests
Richard Bradshaw

A Test Strategy for
the Whole Team
Lisa Crispin & Janet Gregory

Beyond the Mission:
The Art of Adaptive Leadership
Dr. Rochelle Carr

The Road
Less Taken
Jenna Charlton

A Learner's First Few
Steps for Exploring LLMs
Rahul Verma

The Importance of
Accessibility in the
Modern Digital World
Laveena Ramchandani

6

COME WITH ME TO AN ESCAPE ROOM

My best friend and I love doing escape rooms. We’re also utter
geeks, so we spend time talking about how we do escape
rooms as well. We realised that our strength is in our ability

to speak out loud about what we’re seeing and thinking as we’re
looking around the room. “There’s three pictures with monkeys here
on the wall”, “I’m seeing statues of zoo animals on the shelves here”,
Even as we’re making sense of what is going on, we’re already sharing
our train of thought with each other.

CURIOUS VERBOSE OBSERVERS

I think my best friend would make a great tester. She shares qualities
that I see in good testers – she is observant, she is curious about the
meanings, workings and systems of the things she observes, and she is
able to talk about her thought processes. Of course, she would probably
be a good tester even if she weren’t verbose – however, she would
probably not be able to systematically identify patterns for herself,
and she’d find it hard to teach others how to improve or practise.

NARRATING AS A WAY TO PIN DOWN INTUITION

It always bugged me that “intuition and experience” was the answer to
improving at exploratory testing. It’s not particularly actionable. There
must be better approaches than just waiting patiently (patience is not
one of my virtues). There were some approaches out there – James
Bach describes Testopsies, as a way of improving by watching a testing
session to observe the work going on. And I started working with Huib
Schoots on encouraging people to actively narrate their work while
they are testing. “What am I doing?” “What am I thinking” “What does
this remind me of” “What assumptions do I have”. Narrating makes
us more aware of our thoughts and also lets others benefit from our
stories and hear (and correct) our assumptions. I started doing it more
and more, and really getting interested in how we explore.

MICROHEURISTICS

Working in this way led me to “discover” (or describe) microheuristics. My
big aha moment was when I realised that quite often, two testers pairing
will have the same idea for what the next step or action could be while
they are performing exploratory testing. This happens even if that next
step is not a “logical” next move (e.g. saving after completing a dialog).
This was intriguing. If they’re not following a script, how do two testers
(who – in the cases I observed – neither work in the same company nor
on the same domain) come to the same idea at the same time?
My suspicion was that we have shared models, assumptions and

Author: Alex Schladebeck

Auto-Observability:
The Power of Observation

Alex Schladebeck
CEO and Quality Advocate

@ BREDEX GmbH

7

patterns that result from learning about testing, knowing about
software, experiencing errors, and hours of testing (either hands-on,
or automated, or simply asking questions). These things come quickly
to mind when we see something that reminds us of them – and give us
the idea of what to do next (probably to prompt interesting behaviour).
My hope was that by learning to talk about these and by practicing
narration during testing, we would have some concrete patterns that
we can describe and use to teach others.
My name for these patterns is microheuristics.

The definition is:
A quick way to determine “what’s my next action” while testing. A
microheuristic is our brain applying what we’ve just learned to decide on
the next step or experiment. The result of a microheuristic being applied
will usually prompt an immediate action. Such actions are rooted in snap
judgements that we make explicit and strategic by describing them.
They are heuristics because they help us (in a fallible way) to make a
decision. I called them “micro” in comparison to the well-known testing
heuristics which more often guide us to decisions about charters or risks –
not to the very next action in a testing session.

One example is the “pimple” heuristic:
If something seems problematic / acts oddly, interact with it
directly and indirectly to evaluate it more closely, in different
situations.
The interaction can be editing, searching for or redoing steps.
Keep poking until something comes out, or you’re satisfied it
won’t.

The whole story and the other microheuristics I’ve described can be
found here: schladebeck.de/microheuristics/

NEW ROLE, WHO DIS?

I felt pretty pleased with the concept of microheuristics. It was a good
way of describing my experience to others who share my passion
for testing. And then I became a manager, which presented a new
challenge - I didn’t have heuristics for this. And similarly to looking
at an experienced tester doing their magic and not understanding it, I
was faced with figuring out how to lead in all of its joyous complexity
using the black box of those around me as a guide. Not all managers
are good at explaining their thoughts either.
After a few years, I did start to get intuition and experience, only
then to realise that I was at the same place again. In order to improve
myself and to train others in the role, I needed to get better at
talking about my patterns. Ideally I wanted something as concrete as
microheuristics, but I haven’t found that (yet?). Instead, I went back
to the principle that led me to them. Narrating. Being explicit about
those firing neurons in my brain. And I discovered that what I’d been
doing all this time was a kind of auto-observability. I’ve been using
narration as a way of following events through my brain, of adding log
statements that I can find later. In this sense, I’m the system that I’m
asking new questions of. I’m looking at my output to determine my
inner workings. It’s a bit meta but it feels like a good fit.

"In order to
improve myself

and to train
others in the

role, I needed
to get better at

talking about my
patterns."

Since I enjoy having names and labels for things, finding the term
“auto-observability” was a huge relief. It didn’t come from my own
brain cells though - I attribute a great deal of it to Elizabeth Zagroba
who suggested the term “leadership observability” and sent me to
Hazel Weakly’s blog on “redefining observability”1. Hazel ends with
the point that observability is organizational learning, and notes that
“observability is the process through which one develops the ability
to ask meaningful questions, get useful answers, and act effectively
on what you learn”. Of course this is relevant for the observability we
talk about in a technical sense. But it’s also true of leadership work.
We become the system that others ask questions of.

CAN WE OBSERVE OUR LEADERSHIP ACTIVITIES?

I think that using this approach can help us to observe (in both senses)
our leadership abilities. I started gathering and labelling activities on
a whiteboard of what I am doing when I do leadership and management
work. Activities like making decisions, deciding whether to even make a
decision, prioritising for myself, prioritising for the company, managing
conflict, dealing with unknown circumstances, dealing with crisis, staying
sane (that’s an important one!).

And for each one, I’m collecting principles and experiences and
heuristics of how to go about them. They’re not microheuristics,
because seeing a thing doesn’t determine a next action. But they
provide ways to talk to others about how I’m working. Which gives the
same benefits as narrating testing: I learn, they learn, and we have the
opportunity to find holes in our assumptions.

APPLICATIONS

I think this idea of auto-observability is a powerful one that can be
taken into any role. If you’re new at it – ask others around you how
they do their work. Start categorising what you’re doing and collect
your thoughts and experiences on those activities. And when you
need to mentor, train and support others – practice talking about
your thought processes. Be the person who explains what is going on
in the black box, be it for complex debugging, locating performance
problems, prioritising risks or managing communication and conflict.
Whatever it is you’re doing, try to know why. I think testers are
probably good at that. After all, we are the curious observers. We just
need to get verbose.

I’ll leave you with a quote from a great author that this topic always
makes me think of:

First Thoughts are the everyday thoughts. Everyone has those.
Second Thoughts are the thoughts you think about the way you
think. People who enjoy thinking have those. Third Thoughts
are thoughts that watch the world and think all by themselves.
They’re rare, and often troublesome. Listening to them is part of
witchcraft.

- TERRY PRATCHETT, A HAT FULL OF SKY

I think this
idea of auto-

observability is
a powerful one

that can be taken
into any role.

1. https://hazelweakly.me/blog/redefining-observability/

9

Sometimes, it’s hard to see the forest for all of the trees. We
can’t see progress, or stagnation, if we only ever look at the
current state.
Years back, I took on a new role with the main goal being to

move the organisation’s testing to the next level. In particular - their
automation strategy. It was sold to me as a solid state where the
department had invested heavily in automation, had a lot of automated
tests in place and had worked really hard on making automation a
part of the normal team delivery. I ́ve worked with my fair share of
problematic automation transformation projects and I like to believe I
know a bit about what not to do.
I envisioned a field of green tests and a mindset of “If it fails we fix it”
and teams, and testers, working together to constantly improve. That
is not really what I saw.
I saw failing tests, an increasing number of tests, testing still being
a bottleneck and worse: it felt like no one was worried. I did. But
I couldn’t see the pattern by only looking at individual data, like
a single conversation or a single nightly run. So I started digging. I
pulled historic data into spreadsheets, I started asking questions and
slowly pieced together a picture of what was going on, and what we
could do about it.

I talked to people who had come the farthest and worked my way
outwards. I spoke to testers, scrum masters, developers, architects,
product owners, operations and management. The questions shifted
but they all circled around if people/teams felt confidence in the
automation, how much time they spent on maintaining them vs.
improving them, what their biggest wins and pain points were.
Some things stood out.

•	 Testers were too busy delivering to make space for
proactive work.

•	 Testers felt the main problems were impossible to fix,
better to accept and work around them

•	 You get what you measure, and you improve what you
are being measured on.

Author: Lena Pejgan Nyström

Listen Beyond the
Pass and Fail

Lena Nyström
Engineering Manager

@ Nordnet

TOO BUSY DELIVERING TO MAKE SPACE FOR PROACTIVE WORK.

If you don’t actively make space for it - bigger refactoring and
improvement work can be very hard to fit into a busy schedule.
There will never be time for it naturally. Parkinson’s law states
“work expands so as to fill the time available for its completion”
- and this is what I saw here as well. People were too busy to.
What I saw here was a never-ending cycle of

•	 Analysing the last run
•	 Debugging issues to decide if they were bugs or

problems with test data or test environments
•	 Fixing issues, or more commonly - mark the test as

having a known bug
•	 Setting up for nightly run

Repeat everything the next day. Any time left was used to write
new automation. Little to no time was spent on improving things
(proactive) only fixing things (reactive). As a result, completing
this cycle took more and more time, leaving less time for
improvement and requiring more man- and computer power.
When you are in this loop – it is really hard to see it. It is very
similar to how we react to stress. The more stressed we are, the
less access we have to our full capabilities2.

PROBLEMS ARE IMPOSSIBLE TO FIX, BETTER TO WORK AROUND

THEM

When you don’t know about an area, it can feel impossible to
change anything about it. My testers kept saying the issues were
“impossible to fix” and instead tests were re-run locally - where
they often passed. So they weren’t prioritised. When looking a bit
deeper, there were a few areas where we could fix things, with a
little help from others.

We had problems related to timing (backups, patches, batch
jobs) or hardware/network (firewalls, DNSs, queues). They felt
unfixable, but with collaboration with our operations people
we worked on rescheduling tests, re-configuring hardware and
buying more computer power.
Problems with data limitations, limited capacity of our environments
and dependencies to other services could be improved by changing
how we worked. We moved to generating data as needed instead
of leaning on pre-existing test data, we worked on removing
dependencies and put in place a long term plan for getting the
resources and prerequisites needed for a good, modern setup of
environments and data. Some of our problems were due to very
old setups and hardware but the general group seems to still be
relevant, based on the conversations I’m still having.

Some things were simply problems related to communication
and/or process. A lack of communication between teams or teams
having different timelines and priorities. Team A didn’t make
time to fix their tests to match changes made in Team B’s code
because they were busy doing something else. Team B had no idea

When you don’t
know about an
area, it can feel

impossible to
change anything

about it.

2. https://dandypeople.com/blog/stress-in-a-nutshell-and-the-connection-to-leadership/

11

their changes would affect Team A so they never thought to inform
them. Or they assumed someone else would. The hardest problems
to solve are people problems, but the solution typically starts with
talking to each other.

YOU GET WHAT YOU MEASURE. YOU IMPROVE WHAT YOU ARE

MEASURED ON

I found an unexpected resistance to deleting tests. We had tests that
had run for years without ever passing. People still did not want to
delete them.

One reason is the emotional barrier to removing something you have
invested in - sunk cost fallacy. “It might come handy later”. This was not
surprising, although I was underestimating the strength of it.
More surprising was the realisation that one of the main metrics we
measured, and reported, was the number of test cases automated. It’s
an easy thing to measure, but a hard thing to draw any conclusion from.
It says that we are prioritising automating tests but says nothing of the
value added or the quality of the automation. On a department level this
might make sense, particularly in combination with things like total run
time, time spent on maintenance, speed of delivery and my favourite:
confidence in the automation. But on an individual level it had very bad
effects. When you, a tester, are setting yearly goals and automating tests
is a prioritised activity specifically mentioned in the career framework
of your company - would you delete tests? Or would you make sure to
prioritise creating more, to meet those goals? And as a manager or lead -
If you have to report those numbers on a monthly basis to a board - who
expects to see big nice increasing bars in the graph - would you prioritise
setting aside time to evaluate and delete tests? Or would you leave them
as is, arguing that they might come in handy later.

SUMMARY

Looking at trends rather than just the current state will help you see
patterns. Those patterns can help you identify areas of improvement.
If you never take time to zoom out and look for those patterns, you
risk getting stuck in reactive mode - only seeing the next work task to
pick up. The degradation of quality, speed of delivery and value might
be so slow it’s hard to see it’s there. It’s like boiling frogs.
Involving people with different skill sets might solve problems you
thought were unsurpassable. Impossible might be possible with
another set of tools. Think about why it feels impossible. Who would
you need to be to be able to solve it? What would have to change for it
to no longer be impossible?
Make sure you make room for continuous improvements. Making time
for proactive work will save time in the end. The money and time
saved and the increased team and customer satisfaction is a solid
business case any day. It might be surprising, but no one (not even
your manager) can create that time for you. Time is a limited resource,
work is unlimited. But you can get help making space for it - but only
if people know you need it.
And lastly: You get what you measure, and people will improve what
they are being measured on. So be careful what you go looking for.

"Make sure you
make room

for continuous
improvements.
Making time for
proactive work

will save time in
the end."

12

A Learner's First Few
Steps for Exploring
LLMs

Rahul Verma
Head of Test Automation

@ trendig technology services GmbH

A lright, so you've decided to dive into the
world of Large Language Models (LLMs),
have you? Bold soul. I've been navigating
this maze myself, so I figured I'd share my

journey. It's been going well for me - when the stars
align. But don't let me cramp your style. Go ahead,
blaze your own trail. After all, who am I to steer your
ship? To each their own, as they say. Which is polite
for 'I wouldn't do that but go ahead, poke the bear.
I'm sure that it’s in a good mood today.’

Picture created with AI

Author: Rahul Verma
Co-authored with ChatGPT o1-preview.

13

START WITH A FRONTIER MODEL'S WEB

INTERFACE

First things first, dip your toes in. Head over
to a frontier model's web interface like ChatGPT or
Claude. Start small. Ask it to craft an ode to your
morning alarm clock or explain the secrets of the
universe as told by a toddler. You know, the usual
existential quests. It's all fun and games until the
machine starts pondering your existence. Just
kidding. Unless it already has. Probably.

Your goal at this stage is to grow beyond gotcha
prompts that one borrows from the university of
LinkedIn like “Which is larger - 9.11 or 9.9?” or “How
many r’s are there in Strawberry?”. Wrap that up. Fast.
Have one more go if you must. Have one last laugh.
Then start asking questions that actually matter
to you. Like requesting a love letter to your cat or a
heartfelt apology to your neglected gym membership.
At least that's personal and beats indulging in
pseudo-intellectual games. It's far more rewarding
than trying to stump the machine with overused
riddles that only serve to inflate egos on LinkedIn.

PAY FOR IT AND GO DEEPER

Once you've had your fun and realize
the abyss of curiosity is deeper than you

thought, consider parting with some cash. Yes, open
that wallet. An investment in knowledge pays the
best interest - or at least gives you something to talk
about at parties. Dive deeper. Learn about prompt
engineering - a term that makes "asking nicely"
sound like a science.

Try different types of problems and play around
with input-output formats. Maybe even learn about
Transformers and the Attention mechanism. No,
not the robots or your tendency to zone out when
someone mentions 'synergy.'

EXPERIMENT WITH ROOT PROMPTING

Time to get a bit more sophisticated.
Experiment with root prompting - the first

prompt that sets the tone for the entire chat. Think
of it as your opening line at a party. You wouldn't
walk in and shout something inappropriate - well,
maybe you would, but let's aim higher. It's like your
first tweet of the day: make it count before you're
cancelled for that typo that changed "public" to
something else entirely.

Maybe go with, "You're a motivational speaker
who uses sarcasm to inspire," and see how the AI

motivates you. Or perhaps, "You're a journalist who
can't resist a good pun." The idea is to set the stage so
the AI knows which costume to wear. Or don't bother.
It's your rodeo; I'm just the guy selling popcorn.

CREATE A CUSTOM GPT

Why keep hammering out the same old
commands when you can get the AI to read

your mind - or at least pretend to? Noticing that
your prompts are starting to feel like a scene from
Groundhog Day? Saying the same thing over and
over, like a sitcom rerun no one asked for? Repeating
yourself like a parrot with short-term memory
issues? It's time to build a Custom-GPT.

Turn those repetitive requests into custom
instructions. It's like teaching a parrot to talk, but
without the danger of it quoting your questionable
late-night texts. Let the AI handle the repetitive
stuff so you can ponder life's mysteries, like why
socks always go missing in the wash.

EXTEND CUSTOM GPT WITH CODE

AND TOOLS

Feeling experimental? Upgrade your Custom
GPT with some code or outside services. Add a few
gadgets into the equation. How about connecting
it to your smart mirror? Who knows? It might start
giving you motivational speeches - or brutally
honest critiques - every morning. The possibilities
are endless - until you develop a complex.
By integrating code and external services with your
Custom GPT, you're essentially giving it the keys
to your digital kingdom. It's like handing over your
house keys to a stand-up comedian - you don't
know whether you'll come home to a surprise party
or find your furniture rearranged for a joke.
Remember - with great power comes great potential
for hilarious mishaps.

EXPLORE THE API LAYER

Now we're stepping into the big leagues.
Time to dive headfirst into the API layer.
Don't panic; it's not as scary as it sounds.

Start tinkering with the Chat API - send messages,
receive responses, maybe even upload some images.
Yes, even that unflattering selfie you've been
hiding since the last family reunion. Who knows?
The AI might appreciate your unique sense of
style. Play around with response formats— make
it sing, dance, or at least reply in JSON. Enable
tool or function calling; make the AI fetch data,

1

2

3

4

5

6

14

Use Vector Databases for semantic search. Sounds
fancy, doesn't it? But it's not as high-tech as it
sounds. Break down that colossal content into bite-
sized pieces. Summarize effectively. Then casually
drop "vector embeddings" into conversation at
parties. Your friends will be so impressed they'll
probably change the subject.

 DIVE INTO RETRIEVAL-AUGMENTED

GENERATION (RAG)

At the end of this enlightening journey,
it's time to tackle RAG - Retrieval-Augmented
Generation. Start small; there's no need to wrestle
a bear on your first day at the zoo; after all, even
Picasso started with finger painting.

Try out different RAG styles, like a chef
experimenting with recipes - some will be culinary
masterpieces, others will set off the smoke alarm.
Combine your accumulated knowledge to craft
something truly magnificent - or at least something
that doesn't make you want to throw your computer
out the window.

perform calculations, or tell you the weather in
Timbuktu. Manage context like you're conducting a
conversational orchestra, keeping every instrument
in sync.

But let's not get ahead of ourselves. This is still basic
territory. So, maybe keep that cape in the closet a
bit longer. You're not quite ready to audition for
"America's Next Top Coder." Master Yoda you are
not - yet.

CREATE A MINI-FRAMEWORK

Fed up with the same old, same old? Time
to whip up your own mini-framework. Craft

some reusable modules to tackle the tedious bits,
so you can focus on more crucial matters - like
figuring out why you've got 200 unread emails or
debating whether pineapple belongs on pizza.

And hey, when you've automated the dull stuff, you
can finally catch up on that series everyone's been
spoiling for you. Plus, automating repetitive tasks
makes you look like a genius, even if you're just
avoiding actual work. It's a win-win.

EXPLORE LANGCHAIN AND LANGSMITH

By now, you might as well dive into
LangChain and LangSmith. They're like the

secret sauce for working with LLMs - or perhaps
just more rabbit holes to tumble down. Either way,
worth a peek.

But fair warning: LangChain can take a simple task
and wrap it in layers of complexity so thick you'll
need a machete to cut through. It's like asking for
a glass of water and being handed a blueprint for a
desalination plant. Sure, it's impressive, but all you
wanted was a drink. On the bright side, wrestling
with it gives you something to complain about on
social media - because who doesn't love a good rant?

CHUNKING LARGE CONTENT

AND SEMANTIC SEARCH

Why try to leap over a mountain in one bound
when you can stroll up it one step at a time - and save
yourself from cardiac arrest? Dealing with massive
amounts of text? Time to learn about chunking and
embeddings. No, it's not a new fitness regime or
something you'd find in a dodgy nightclub.

7

8

9

10

Designed by Freepik

15

BE SCEPTICAL AND THINK CRITICALLY

But hold on a minute. Before you get too carried
away, remember to be skeptical. Wear your critical
thinking hat - if you can find it under all that
enthusiasm. There's no true learning or exploration
without questioning what's in front of you.
Especially with LLMs. They might dazzle you with
eloquence, but they're just algorithms predicting
text - not philosophers decoding the universe.
The LLMs can generate impressive text, but they
don't understand context like a human does. They
don't feel, they don't think, they don't ponder the
meaning of life while sipping a cup of tea. So, while
you're experimenting and building with LLMs,
keep your wits about you. Question the outputs.
Cross-check information. Just because it sounds
convincing doesn't mean it's correct.

Think of LLMs as your chatty friend who always
has an answer, even when they have no idea what

they're talking about. Entertaining? Yes. Reliable?
Not always. So, take everything with a grain of salt-
maybe the whole shaker.
Wisdom isn't just about having answers; it's about
knowing which questions to ask and which answers
to trust.

CONCLUSION

So there you have it - a path for exploring LLMs
that's been working for me. This should keep you
occupied for a couple of months, or at least until
the next big distraction comes along. Maybe it'll
suit you, or maybe you'll forge your own path and
make me look like I'm stuck in the Stone Age. Either
way, it's all part of the adventure. Go on, place your
bets. After all, what's the worst that could happen?
Actually, on second thought, let's not go there.

Find out more at
UBS-HAINER.COM

Put your test data
management on autopilot

Agile test data platform
for agile teamwork

XDM

FIND

ORDER

Find customized test case data
for individual testing.

Order your data at the touch of a
button in the Data Shop.

Fast delivery of masked data,
including detailed reports.

Organize production-related data
in various test environments.

RECEIVE

MANAGE

hands-on training
AiU Certified

GenAI-Assisted
Test Engineer

AI-Assisted Testing Introduction

Prompt Engineering

Requirements Review

Test Generation and Optimization

Test Data Generation

Bug Advocacy

Future Possibilities

What you’ll learn:

trendig.com

16

Beyond the Mission:
The Art of Adaptive

Leadership
Author: Dr. Rochelle Carr

Leadership in today’s dynamic business
landscape goes far beyond simply
interpreting a company’s mission. It’s an
intricate art that fosters transformation

and drives innovation - like being a juggler, but
with more spreadsheets and fewer clowns. As
change accelerates, effective leadership becomes
an essential investment in both personal and
organizational growth. What worked yesterday
might not suffice today, making it crucial for
leaders to navigate this landscape with a sense of
humor and adaptability.

To begin this journey, let’s address the elephant in
the room: fear. We all know it well, often leaving
us pondering, “What do I really want?” Fear can
cloud our vision, making it difficult to articulate our
goals. Yet here’s the catch: you can’t achieve what
you haven’t named. So, grab a notepad (or a coffee-
stained napkin - no judgment here) and jot down
your aspirations. Think of this exercise as your
personal GPS - minus the annoying voice telling
you to make a U-turn. Naming your goals is the first
step toward transforming them into reality.

However, it’s easy to fall into the trap of unrealistic
optimism. It’s tempting to believe everything will
fall into place like a scene from a rom-com, but
spoiler alert: it usually doesn’t. Leaders often fixate
on deliverables, finding it easier to chase metrics
than to nurture the people driving those results.
Yet, it’s essential to remember that people are
wonderfully messy, coming with emotions, ideas,
and the occasional existential crisis. Embracing
this messiness is key; by focusing on your team, you
cultivate resilience and innovation - like herding
cattle, but occasionally discovering a calf genius
who can solve complex problems.

When you realize you’re stuck, don’t panic.
Stagnation can be a valuable teacher. Acknowledging

that you’re in a rut isn’t a sign of weakness; it’s a
necessary step toward growth. This is where action
steps come into play. Setting regular check-ins -
whether through one-on-one meetings or team
huddles - can create a space for open dialogue. These
conversations should focus not just on deliverables
but on personal and professional aspirations,
helping to identify what truly motivates your team.

As you confront these barriers, remember to
celebrate small wins along the way. These
victories act as breadcrumbs guiding you out of the
wilderness of stagnation. Whether it’s resolving
a long-standing conflict or completing a minor
project, acknowledging these moments can reignite
motivation and build momentum. After all, if we
can’t celebrate the little things - like finally getting
the office Wi-Fi to work - how can we tackle the
bigger challenges ahead?

Reflecting on the past can also provide valuable
insights into shaping the future. What patterns
emerge in your successes and failures? Analyzing
these trends isn’t merely about avoiding pitfalls;

Designed by Freepik

17

it’s about leveraging your strengths. Embrace what
works, but don’t hesitate to pivot when necessary
- much like that diet you started last January. It’s
time to retire ineffective strategies and explore new
avenues for success, which brings us to another
important action step: embracing experimentation.
Foster a culture where team members feel safe
to share their “crazy” concepts without fear of
immediate judgment - because sometimes the
wildest ideas lead to the best innovations.

A powerful example of adaptive leadership in
action is Netflix. According to Mark Fairlie, Senior
Analyst & Expert on Business Ownership, Netflix
originally started as a DVD rental service but quickly
recognized the changing landscape of consumer
behavior and embraced the shift to streaming.
Instead of resisting change, they pivoted their
entire business model. This transition required
not only a strategic overhaul but also a focus on
nurturing their employees. Their strong company
culture prioritizes freedom and responsibility,
allowing teams to innovate without the constraints
of micromanagement.

Netflix also exemplifies the importance of a
feedback loop. The company encourages open
communication, holding regular meetings to
discuss what’s working and what isn’t. As they
ventured into original content, they celebrated
small wins, such as the success of "House of
Cards," which validated their strategic shift.
Importantly, they learned from failures too, like
their misguided attempt to split DVD rentals from
streaming services, using those lessons to refine
their approach.

Another critical aspect of adaptive leadership
is the power of diverse perspectives. Bringing
in individuals who think differently isn’t just
trendy; it’s essential for breaking through barriers.
Surround yourself with people from various

backgrounds, departments, or industries. These
fresh voices can ignite innovation and challenge
your thinking. Embrace the discomfort that comes
with differing opinions - growth often lies outside
our comfort zones. Plus, who doesn’t want to
argue about the best pizza toppings with someone
from marketing? To facilitate this exchange of
ideas, establish a feedback loop. This could be as
simple as a suggestion box (digital or physical) or
regular brainstorming sessions to gather diverse
perspectives and insights about what’s working and
what isn’t.

Finally, when faced with persistent obstacles,
consider forgetting the barrier altogether.
Sometimes, the best way to move forward is to
chart a completely new course. This doesn’t mean
abandoning your goals; it means recognizing that
rigidity can stifle creativity. Flexibility is a leader’s
best friend. If the road is blocked, maybe it’s time
to take the scenic route or simply grab a coffee and
rethink the whole thing.

CONCLUSION

In conclusion, adaptive leadership in today’s
ever-changing landscape demands mindfulness,
flexibility, and a good dose of humor. By naming
your aspirations, engaging your team through
regular check-ins, celebrating small wins, learning
from the past while embracing experimentation,
and creating a robust feedback loop, you’ll foster
an environment ripe for innovation and growth. So,
roll up your sleeves, prepare to embrace change,
and remember: the most effective leaders aren’t
those with all the answers, but those who bravely
ask the right questions - and manage to have a little
fun along the way. After all, if you can’t enjoy the
journey, what’s the point of the destination?

Dr. Rochelle Carr

Path Forward Empowerment

Certified Coach, Speaker, Trainer

and Facilitator

Photo by freestocks on Unsplash

18

A Test strategy for the
Whole Team

Modern software teams see the value
of engaging the whole team to build
quality in. We hear from a lot of people
who want to get everyone on the

team engaged in testing activities. They are often
struggling with how they can plan and execute an
effective testing strategy together. This led us to
design the Holistic Testing model that can be used
to design a test strategy for your team (see image on
the right).

Larger development organizations may decide to
create testing strategies at different levels. This
could include:

•	 A defined ubiquitous language for test
definitions.

•	 A list of quality attributes that might be
included in testing, with a definition of
each.

•	 Guidelines for tools that are appropriate
for different types of testing including
test automation.

•	 Development approach used, for
example, Kanban, Scrum, or one specific
to the company.

•	 Product-level test strategy, including
risks, constraints, and quality attributes
to consider.

When a team is developing a new feature, they need
to consider the higher-level strategies and build
those constraints into their testing strategy.

Holistic Testing Model
The Holistic Testing model is particularly relevant
for teams who are practicing continuous delivery/
deployment or want to move towards that. It visualizes

the major stages of the infinite loop of software
development. In the image below, we’ve included
examples of testing activities that may happen in
the various stages. A strategy could be as simple as
substituting the examples shown in the model below
for your own testing activities at each stage.

A new feature usually starts with discovery activities
on the left side of the model. Step with us through
the model to explore strategic choices at each stage,
starting with the discovery activities.

DISCOVER

As business stakeholders think about what they
want next, they need to be asking questions about
what problems they are trying to solve, who the
customers are that might be relevant, and what
outcome they would expect. They need to test their
idea and determine the value of the possible feature.
Both Lisa and Janet have worked on delivery teams
whose members were included in these early feature
discussions. It’s a great time to ask questions about
the purpose of a new feature as well as learning how
the business will measure the success of the new
feature in production.

PLAN

Once the due diligence has been done, the delivery
team can learn more about the feature(s) and what
they need to build. They can plan by brainstorming,
together with domain experts, what the feature
might entail – this could be something simple like
creating a feature mind map. The team could use
a risk-storming session to determine what risks
there might be, and perhaps produce possible
risk mitigation strategies. Working with the
business folks, the team can learn which quality
attributes are most important – such as security
or accessibility.

Authors: Lisa Crispin & Janet Gregory

19

Part of planning is getting to the next level of
detail – breaking the new feature into small,
incremental stories. As a team, you could do story
mapping, or maybe draw a simple flow diagram of
the feature. Find visualization techniques that give
your team and the product people the opportunity
to understand how it would flow. This lets you
start thinking about the core stories, identify
complexities, and plan how to test them.

UNDERSTAND

As your team’s development process proceeds
around the loop, you may encounter a roadblock and
go back to an earlier stage to regroup. It’s better to
get those roadblocks eliminated before moving on.

Once a team has sliced the new feature into stories,
it’s time to gain a deeper understanding of each
one. There are many tools that can help drive out
misconceptions and misunderstandings. Some of
our favorites are Acceptance-Driven Development
(ATDD) or Behavior-Driven Development (BDD),
along with Example Mapping.(The book Discovery:
Explore behaviour using examples by Seb Rose
and Gáspár Nagy is one great place to learn about
these). All of these are based on concrete examples
which help show what assumptions people
make. The examples can be turned into tests
to guide development. They can be automated,
as appropriate, and become part of the team’s
continuous integration pipeline, to guard against
future regressions.

This is also a good time for teams to discuss what
events, or monitoring information they need to
build into the system for their observability and
monitoring practices.

As part of the strategy, you would decide which
of these techniques would be used. Of course, you
may change as your team learns more about a
particular story.

BUILD

By this stage, the team has most of the information
about the stories that you are building, but not all.
As a team works on a story, they learn more and
adapt. Information that you gathered earlier is
applied, such as instrumenting the for observability,
monitoring, and/or analytics.

In our own experience, part of the test strategy has
included pairing with the developer to review the
tests at different levels, starting with the unit level.
This builds another level of understanding. We have
found that turning those examples from the earlier
stages into executable tests helps the developers
as they are writing the code. Fast feedback is so
important. Pairing or ensemble (aka teaming or
mob) programming are powerful techniques that
could be part of your strategy.

As we move to the right side of the loop, the
emphasis changes from individual stories and
functionality to the system as a whole.

20

DEPLOY

The code has been deployed to a development or
test environment. Now, the team can consider the
types of testing that could not be done before. It’s
often the first opportunity to test quality attributes
such as performance, load, security or accessibility.
It’s also time to think about the development
pipeline. Infrastructure as code also needs to be
tested. Do the automated tests run as expected? Do
deployments to different environments succeed?
The system as a whole – does it operate as expected?
Does the right data get persisted?

RELEASE

Testing does not finish when your feature is
released to the customer. The team should decide on
release strategies, such as feature toggles or canary
releases, which allow them to deploy to production
while controlling whether customers can see the
new changes. Part of your testing strategy is how
to test the release. Can you safely test the feature
in production? Or mitigate risk by using a strategy
such as canary releases? The telemetry built into
the new and updated code allows the team to keep
track of production usage and identify anomalies
quickly.

OBSERVE

How is your team going to monitor for warnings
and failures? Can you do much of this in your early
testing? If so, use the monitoring capabilities. All
the events that are captured by the code’s telemetry
should be watched continually for indications that
something might be wrong, or that your customers

are using the system in unexpected ways. They can
only be put in place when you think about them early
– make them part of your strategy. Set up alerts
with correct thresholds so the team can respond to
problems immediately.

LEARN

With today’s monitoring, observability and analysis
tools, teams can gather so much useful information
about how their applications behave in production.
It’s possible to see exactly how customers interact
with the product. Teams can use this information
to guide their next changes. Set a goal for the next
step. Design experiments with hypotheses that
include ways to measure the experiment’s success.
Even failed experiments help teams learn.

Documenting your testing

strategy

Make your testing strategy visible so that you
can discuss it not only within the team, but with
stakeholders and other people involved in delivering
new changes. It’s important to use a format that is easy
to update, since your strategy will continually evolve.

We mentioned earlier that your testing strategy
document can be as simple as using the holistic
testing model loop, with your own planned testing
activities filled in at each stage. Another format
we’ve used with good success is a mind map. Mind
maps are a great way for teams to brainstorm
together. They are easily updated, and can include

"Teams can use this
information to guide

their next changes. Set
a goal for the next step.

Design experiments with
hypotheses that include

ways to measure the
experiment’s success."

21

Lisa Crispin
Co-founder @ Agile Testing Fellowship, Inc.

Janet Gregory
Co-founder @ Agile Testing Fellowship, Inc.

Testing activities for
feature: "Individuals

can self-register for a
course"

Understand

Build

Example map the stories

Give tests to the programmers before they start
coding

Quick "show me" sessions before merging changes
to review code, test & explore at story level

Test out additions to monitoring dashboard

Automate executable API and Ui level test, add to CI
test suite when passing

Accessibility testing story level

Team reviews prototypes

Review plans for top priority risks and quality
attributes

artifacts such as test results, screenshots, and links
to other documents. Keep it visible.

Below is a sample of a mind map showing two stages
– Understand and Build.

We’ve also used wikis to share test strategies across
the organization. Whatever you decide to use, commit
to reviewing it frequently and keep it up to date.

A holistic test strategy provides guardrails to help
your team keep improving the quality built into
your product. It eases daily work and ensures happy
customers.

22

Test Automation is not the silver bullet it
was once portrayed as, a robot wizard
capable of doing all your testing for you
and replacing all your humans doing

such work. Some magical sentient code capable
of thought; deciding what should be automated,
executing it, and creating bugs quicker than JIRAs
own performance tests. Doing all this in sub fifteen
minutes, with an ROI of one million percent.
Reminds me of a test tool that I won’t name which
had an animation on its homepage bulldozing
people (assumed QAs) out of an office building to
show its promised value.

Having said that though, test automation is very
much here, and rightly so, it's a wonderful thing
to have on your team. It provides a constant
workstream for all those testers. A flaky test here, a
broken test there, a genuine bug here, a framework
update there, and a green build to put into context.
There's no shortage of work.

Some of you will have read this as humorous, but
that isn’t my intention at all, this is the automation
trade off, a trade off we accept, if you are aware of
it. You see, test automation, and in the context of
this article, I mean automated test scripts, checks,
automated testing, whatever term you prefer, can
provide us with a huge amount of value, but that
value comes at a cost that cannot be ignored. Quite
the opposite, it has to be focused on, planned for,
communicated and have a clear strategy to deal with
this trade off, in order to benefit from all the good.

Author: Richard Bradshaw

Flaky tests are inevitable, you simply cannot control
all the complexities that come with software, yet
alone writing more software to test that software!
Accept they will happen, and have a clear plan of
attack to reduce them, and tackle them when they
happen. Tests will fail, we want them to, kind of
the whole point of having them. But when they do
fail, we need to quickly decipher what the failure
is, a genuine bug, test framework, the test itself, or
flakiness. Tests become outdated, a healthy sign of
a good team, if your app is constantly changing and
stores are shipping the tests need to go with them,
which likely means some tests need updating, or
even deleting. Yes, delete tests, all the time.

So, if we accept these things are going to happen,
what can we do to maximise the value we are
getting from our automated tests? Well that’s where
TRIM(S) comes in, a mnemonic created to help us
create valuable automated tests that are supporting
our wider testing efforts.

T - TARGETED

Our automated tests need to be targeted to a
specific risk and automated on the lowest layer the
testability allows. Your automated tests should be
as small as possible, and ideally focused on a single
risk, or a few at most. That risk should be explored
to find the lowest layer in the application it can be
mitigated. A lot of the time we automate scenarios
or behaviours, but these are often very broad, to

TRIM Your
Automated
Tests

23

maximise value we need small targeted tests. Take
logging in as an example. Most teams have a login
test on the UI. But what risk are you mitigating with
such a test?
Does the username and password match? That the
UI shows the correct form? That the right API is
called? That a session ID is created? That a cookie
is set? A lot happens in systems when we login, and
if we have one single big test for such a behaviour,
we significantly increase the risk of flakiness, and
hugely increase the time it takes to debug such a
test when it fails or needs maintenance. Instead, we
need to break these tests into many small targeted
tests, responsible for testing a single risk.

R - RELIABLE

To maximise their value, checks need to avoid
flakiness, we need them to be deterministic. Are
you testing your tests? You need to. As a minimum
we should be reversing our assertions to make sure
the tests fail, and you are testing what you intended
to test. Ideally, we should be running tests several
times locally before committing. Tests that aren’t
deterministic will steal valuable time from your
team, and significantly reduce your mean time to
feedback, which impacts your team's ability to
make decisions about releasing.

I - INFORMATIVE

Passing and failing checks need to provide as much
information as possible to aid exploration. A failing
test is an invitation to explore, and that exploration
will be significantly enhanced with key information
from your tests. The more pieces of the puzzle
your tests can provide, the quicker you’ll detect
the problem, and keep that mean time to feedback
down. Think things like good test naming, is it clear
what the test is doing so the engineer can match the
code to the tests intent. It’s the assertion clear and
descriptive. Logging, have your tests provide a much
detail as possible to what’s happened during the test.
Artefacts such as screenshots, videos, JSON dumps,
snapshots, files that are going to speed up your
investigation. Having the robots create these things
for you, so everything you need will be right there.

M - MAINTAINABLE

Automated checks are subject to constant change
so we need a high level of maintainability. We love

to talk about this as an industry, and rightly so
it’s important. Some people view tests as living
documentation, so when new features are added,
old features removed or bugs are fixed, our tests also
need to come on that journey with us. Therefore the
easier we can make that effort, the faster our tests
will be running again, and the lower our mean time
to feedback will be. If your code looks like some
Christmas lights that have been thrown into a box
along with ten other sets of lights, it’s going to take
you significantly longer to get that green light again.

S - SPEEDY

Creation, execution and maintenance need to be
as fast as the testability allows to achieve rapid
feedback loops. I’ve mentioned Mean Time To
Feedback (MTTR) several times in this article,
let me explain it. I view automated tests as a
mechanism for rapidly retrieving information
about the system under test. Information that is
critical for helping the team make decisions about
the quality of the code/product. Decisions which
will impact releasing, our customers and usually
the company’s bottom line.

Therefore, it’s crucial we are getting that
information as quickly as possible and that
means we need to ensure creation, execution and
maintenance are as streamlined as possible. Those
three pillars need to work in parallel, one without
the others is not enough. If you focus on creating
TRIM automated tests you’ll definitely get there. If
you aren’t there right now, consider using TRIMs
as an heuristic against your current test automation
and identify some areas you can improve on and
reduce that all important MTTF.

Richard Bradshaw
Senior Architect, Quality Engineering

@ Slalom Build

24

The Importance
of Feedback

Authors: Nicola Lindgren and Vernon Richards

This is an excerpt from the upcoming follow-up to the book “Starting Your Software Testing
Career by Nicola Lindgren. The new book will be co-authored by Nicola and Vernon Richards.

We're talking about anything, from personal and professional relationships to
careers and self-esteem. And we're not just talking about "negative" feedback
either! Learning how to give effective feedback hasn't just helped me become a

better teammate. It's helped me become a better person all-round. Still not sold?

25

Feedback has the power to
build and destroy.

Here are 5 reasons we
should all learn to give good

feedback.

Great but so what?

Improves Communication: Instead of
giving vague or harmful feedback, you can
provide actionable, insightful feedback.

Builds relationships: Providing
constructive feedback and avoiding
nitpicking contributes to a psychologically
safe environment.

Enhances learning: A culture of effective
feedback drives learning by helping
people understand what they did, in what
situation and what the impact was.

Drives success: Environments where it's
safe to fail allow people to experiment
because the consequence of something
"not working" is learning.

Boosts morale: Learning why/how
something works increases people's sense
of progress.

"Seriously Nicola and Vernon, all I need to do is
report bugs! That's the only time I give anyone any
feedback."
Oh yeah? What about...

•	 When you're collaborating on a story,
figuring out how to implement and test the
feature, and someone says something that is?

•	 ...or an amazing one!
•	 During a "lessons learned" session after a

major release?

•	 In a retrospective. Especially when discussing
what the team could do better next time.

•	 When you're part of the on-call team in the
middle of a serious production incident

•	 And... bugs of course!

As you can see, there are endless opportunities for
you to give feedback as a Tester.

How To Give Feedback
Common Themes

There are LOTS of feedback frameworks and models.
Some have 3 steps, some have 5. Some focus on
actions, and some focus on relationships. Regardless
of the specifics of each one or what kind of structure
they use, they all share some common themes.

THEY GET SPECIFIC:
Instead of a hypothetical scenario or talking
around an issue, use an example of something
that happened.

THEY DESCRIBE THE CONTEXT OR SITUATION:
When did this happen, who was there, why were
those people present, what was said, etc. Set the
scene for where and when the event happened.
They focus on objectivity, not subjectivity: It's
the difference between "Bill shouted at Ijeoma"
and "Bill was angry with Ijeoma". At first, stick
to the facts and avoid interpretation. There'll be
time for that later.

THEY SHARE THE IMPACT OF THE BEHAVIOUR:
What is it, and why do you believe it's so
important?

In the next section, we'll share a few models we like
to use to give feedback.

1
2
3
4
5

26

COIN (CONTEXT - OBSERVATION - IMPACT - NEXT STEPS)

This one is great for keeping the conversation constructive.
Context: Explain when and where the observed behaviour occurred.
Observation: State factual observations, not interpretations.
Impact: Share the effect of the behaviour.
Next Steps: Discuss actions or changes needed for the future.

THINGS TO CONSIDER

We've explained the importance of feedback, given you some examples when you might give and
provided some models you can use.

So you're all set right? Well not quite!

There are still some factors to consider when it comes to giving feedback.

Useful Models
There are a bunch of models and frameworks for giving feedback out there!
So many, that if we listed them all we'd be here all year! Instead we'll list some of our favourites and a wild
card thrown in for good measure.

SBI (SITUATION - BEHAVIOUR - IMPACT)

I learned this one from an excellent Dan North talk called "How To
Make a Sandwich", which you should be able to find on YouTube
(recommended viewing!).
Situation: Describe the specific situation where the behaviour occurred.
Behaviour: Detail the actual, observable behaviour without interpretation
or judgement.
Impact: Explain the impact of the behaviour and how it affected you, the
team, or the project.

These models are great, but they aren't a silver bullet. Next, we'll share some things to consider whenever
you're giving feedback.

STAR (SITUATION - TASK - ACTION - RESULT)

I first heard about this method in the context of answering interview
questions. However, it's also great for feedback in general!
Situation: Set the context for the story.
Task: Describe the task and the challenge involved.
Action: Explain the actions taken.
Result: Share the outcomes of those actions.

27

THE SOFTWARETHE SOFTWARE
TESTER’S JOURNEY:TESTER’S JOURNEY:

Exploring CareerExploring Career
Opportunities andOpportunities and

AdventuresAdventures

Vernon Richards & Nicola Lindgren

Nicola Lindgren
Platform Manager

@ IKEA

Vernon Richards
Senior Expert Quality Engineer

@ Ada Health

Here are 5 things to consider when
you're giving feedback

Now. We've talked a lot about giving feedback. But what about
receiving it? That's what the next section is about! But you’ll
have to grab the book when it comes out to read that part.

1

3

5

2

4

How's your state of mind?
Giving feedback can take
a lot of energy and focus,

especially when practising
it. So make sure you're in a
calm and composed state of
and not angry, frustrated or
overly emotional (we aren't

talking about being Mr Spock
though!).

Where are you giving this
feedback?

In our experience, people are
more comfortable getting

feedback in a 1 to 1 situation.
And yes, that includes

positive feedback more often
than you might think!

How could you be
misinterpreted?

This is bigger than word
choice. Many factors affect how
you'll be understood (or not!).

Cultural differences, non-
verbal cues, and our own biases
have a huge impact on how we

communicate.

When is a good time? Try
not to ambush people on
their way to lunch or an

important meeting! Choose
an appropriate time and

setting so people don't feel
caught off guard.

How clear are your
intentions?

People tend to judge
others by their actions

but themselves by their
intentions. Try to avoid
this mistake by making

the intentions behind your
feedback clear.

28

The Importance of
Accessibility in the

Modern Digital World
Author: Laveena Ramchandani

In the digital age, where technology permeates almost every aspect of our
lives, accessibility has become a critical consideration for developing inclusive
software and web applications. Accessibility ensures that all users, including
those with disabilities, can access and use digital products effectively. As
we advance into an era of heightened digital integration, understanding
and implementing accessibility is not just a regulatory requirement but a

fundamental aspect of creating equitable and user-friendly technology.

Photo by unicef on Unsplash

29

Accessibility can significantly broaden your market
reach. By making digital products usable for people
with disabilities, organizations tap into a previously
underserved segment of the market. This inclusive
approach can also enhance brand reputation and
loyalty. Companies that are seen as champions of
accessibility often receive positive attention and
respect from the public, which can translate into
increased customer engagement and business
growth.

The Importance of Accessibility

1 2

3 4

Promoting Inclusivity and
Equality Enhancing User Experience

Legal and Regulatory
Compliance

Accessibility in digital design is essential for
inclusivity and equality. The World Health
Organization estimates that over one billion people
worldwide live with some form of disability. For
these individuals, barriers in digital environments
can hinder their ability to perform everyday
tasks, access information, and participate in
online communities. By prioritizing accessibility,
developers and organizations ensure that digital
content is available to everyone, regardless of their
physical or cognitive abilities.

Accessibility is not just about compliance; it’s
about enhancing the overall user experience. Well-
designed accessible features often lead to improved
usability for all users. For example, captions on
videos not only assist those who are deaf or hard
of hearing but also benefit users who are in noisy
environments or prefer to consume content without
sound. Similarly, clear and consistent navigation
aids all users in finding information more efficiently.

Many regions have enacted legislation requiring
digital accessibility. For instance, the Americans
with Disabilities Act (ADA) in the United States
and the Equality Act 2010 in the United Kingdom
mandate that digital services must be accessible to
individuals with disabilities. Non-compliance can
result in legal repercussions, including lawsuits
and financial penalties. By integrating accessibility
into your development process, you mitigate these
risks and demonstrate a commitment to legal and
ethical standards.

 Expanding Market Reach

"Accessibility
ensures that all
users, including

those with
disabilities, can
access and use
digital products

effectively."

30

The European Accessibility Act (EAA) 2025 is a
significant piece of legislation aimed at enhancing
accessibility across the European Union. Set to
be fully implemented by 2025, the EAA seeks to
improve the accessibility of digital and physical
environments for individuals with disabilities.

The European Accessibility Act (EAA) 2025

Incorporating Accessibility into Test Strategy

1
2

3

Key Provisions of the EAA

Early Detection of Accessibility
Issues

Comprehensive Test Coverage

Impact on Businesses

Preparing for EAA Compliance

Organizations should begin preparing for EAA
compliance by conducting accessibility audits of
their digital assets, training staff on accessibility
best practices, and integrating accessibility into their
design and development processes. This proactive
approach will ensure a smoother transition and
minimize disruptions as the EAA comes into effect.

The EAA mandates that various sectors, including
digital services, transport, and public services, must
meet accessibility standards. Specific requirements
include:

Digital Accessibility: Websites, mobile applications,
and e-commerce platforms must be designed
to be accessible to individuals with disabilities.
This includes compliance with established web
accessibility standards such as the Web Content
Accessibility Guidelines (WCAG).

Public Sector: Government websites and services
must adhere to accessibility standards, ensuring
that public information and services are accessible
to all citizens.

Transportation and Public Services: Public
transport services, including ticketing and
scheduling systems, must be accessible to individuals
with disabilities.

For businesses operating within the EU, compliance
with the EAA will be essential. The act provides a
clear framework for accessibility requirements,
which helps organizations understand and
implement necessary changes. Businesses that
proactively adopt these standards will not only
meet regulatory obligations but also enhance their
reputation and market reach.

1 2
Integrating accessibility testing early in the
development process helps identify and address issues
before they become costly to fix. By incorporating
accessibility checks into the initial design and
development phases, teams can ensure that potential
barriers are identified and resolved promptly.

Incorporating accessibility into your test strategy is essential for creating inclusive digital products. Here’s
why accessibility should be a key component of your testing approach:

Accessibility testing should be an integral part of
your overall test strategy to ensure comprehensive
coverage. This includes automated testing tools,
manual testing by experts, and user testing with
individuals who have disabilities. Automated tools can
quickly identify common accessibility issues, while
manual and user testing provide deeper insights into
real-world usability and potential barriers.

31

In the modern digital world, accessibility is not merely a regulatory
requirement but a fundamental aspect of creating equitable and
user-friendly technology. By understanding and implementing
accessibility, organizations can promote inclusivity, enhance user
experience, ensure legal compliance, and expand market reach.

With the European Accessibility Act (EAA) 2025 on the horizon,
businesses must prepare for the evolving accessibility landscape.
Incorporating accessibility into your test strategy is crucial for
identifying and addressing issues early, ensuring comprehensive
coverage, and fostering a culture of inclusion.

By prioritizing accessibility, organizations not only meet regulatory
requirements but also contribute to a more inclusive digital world
where all users can participate fully and equitably. Embracing
accessibility is a step towards creating technology that serves everyone
and reflects the values of diversity and inclusion that are essential in
today’s society.

Laveena Ramchandani
Quality Engineering Manager

@ EasyJet

Enhancing Product Usability

Meeting Regulatory
Requirements

Building Trust and
Reputation

Fostering a Culture of Inclusion3

5 6

4
Accessibility testing improves the overall usability
of digital products. By ensuring that your product
is accessible to users with disabilities, you enhance
its usability for all users. Features like keyboard
navigation, screen reader compatibility, and
customizable text sizes benefit not only individuals
with disabilities but also users in different contexts
and environments.

Incorporating accessibility into your test strategy
fosters a culture of inclusion within your organization.
It demonstrates a commitment to equitable design
and encourages all team members to consider the
needs of diverse users. This cultural shift can lead
to more innovative and empathetic design solutions
that address the needs of a broader audience.

As accessibility regulations and standards become
more stringent, integrating accessibility into your
test strategy helps ensure compliance with legal
requirements. This proactive approach reduces
the risk of non-compliance and potential legal
challenges, while also positioning your organization
as a leader in accessibility.

Organizations that prioritize accessibility build
trust and a positive reputation among users and
stakeholders. Demonstrating a commitment to
inclusive design and accessibility can enhance
customer loyalty, attract a diverse user base, and
differentiate your brand in a competitive market.

32

33

We’re often told to become T-shaped testers but I’d
rather be a “me” shaped tester. Following my passions

and becoming a unicorn.

The Road Less Taken

Author: Jenna Charlton

When Jose asked me to write an article for Agile
Testing Days I was overwhelmed by the possibilities.
I rarely get to write about what’s on my heart and
what I truly believe. As I considered my options,
I couldn’t get the word journey out of my mind.
Having been recently laid off at the time of writing
this, I was feeling adrift and a little scared. So many
job postings were for automators who develop
frameworks, or test managers who could contribute
to the organization's automation project. I can’t
do those things, my journey and my passions have
taken me in a different direction. Then, while at a
concert, one of my favorite songs reminded me of
the value in the road less traveled		 .

"I could have lived with my Gods as a Persian prince,
I could've played safe, But in the end the journey's
brought Joys that outweigh the pain."
- Frank Turner, Journey of the Magi

Everyone’s testing journey into testing is different.
Some of us take a direct path from a university or
bootcamp right into a testing career. For others,
myself included, it's far less linear. We can find
ourselves in a testing role after working on the
business side at an organization or customer
support, some of us even move from development
to testing. No matter how you become a tester, what
matters is your journey once you’ve become one.

YOU ARE THE AUTHOR OF YOUR CAREER STORY

You are the hero and main character of your career
journey. I’ve often heard people liken professional
development to a choose your own adventure
story. However, I find that comparison to be far
too restrictive. While there are multiple potential
endings in a choose your own adventure book, the
outcomes are predefined and you’re not the author.
The most empowering and terrifying thing you

Photo by Ian Schneider on Unsplash

34

can do in your career is own your agency and self
determination.

Once you fully embrace your role as the owner of
your story, the question becomes what path to
explore. I have taken an experimental approach to
my career. My skill set is wide and represents what
I’m most passionate about. I was challenged many
years ago to put words to what testing is to me. Not
to what testing has given me (testing has given me
a lot), what it represents, almost like a personal
mission statement. For me, testing is about being
of service to the user, my peers, and the business.
Everything I’ve invested time and effort into
learning has been in service to this mission. I began
learning accessibility, user experience, developed
skills as a trainer and speaker, and even became a
researcher into the psychology and experience of
work to better serve users and my fellow testers.

The best thing that comes from being the author of
your story is your ability to change course. I have
attempted to become a competent coder many
times in my career. The rhetoric that tells everyone
to become T-shaped largely drove me to revisit
this path multiple times. However every time I’ve
attempted to learn I’ve turned around and hiked
back to what I’m passionate about. Most of us spend
more time working than we do with our loved ones
every week. I can’t bear the thought of spending that
time doing work I don’t enjoy and isn’t fulfilling.

PASSION AND A PARADOX

I am passionate about the research I’m doing and
delivering a delightful user experience. For me,
work only feels fulfilling if I have a deep affinity
for the work I’m doing. However, passion is not
required for success. If your career journey is that
your job provides a paycheck and that is enough,
consider this your thumbs up from the universe
that your journey is valid. Not everyone is going
to have passion for testing or work in general and
that is okay. Frankly more career influencers need
to embrace this. For those who like me need to feel
deeply invested in and connected to the work they’re
doing to feel successful, finding what fulfills you is
critical.

I was once asked by a friend who felt stuck and
unmotivated how I discovered the work I love doing.
The misconception is that we’re always going
to love the work we do, which is rarely the case.
Instead, I had to identify what matters to me most
in the kind of work I do. I’ve turned this process
into an exercise for myself. I start by listing all of

the words that relate to the kind of work I want to be
my day to day focus. Then, I step through a process
of crossing off words that are “work I enjoy” till I
have a list of 5 “excites me” words. My 5 words are:

•	 Enablement
•	 Innovate
•	 Leadership
•	 Coaching
•	 Consultative

Once you unpack what truly motivates you, it
becomes much easier to chart a course for yourself
to follow.

FINAL THOUGHTS

After you find what matters to you most, connect
with people who are already doing the kind of
work you want to be doing. Look for opportunities
to shadow, find a mentor, and people willing to
sponsor you. Most importantly, reach back and be a
ladder to those coming up behind you. Give back at
least as much as you were given.

We spend a disproportionate amount of our time
working and thinking about work in comparison
to the time we spend with family, friends, and on
our hobbies. While you don’t have to have passion
for work, you do need to be excited and motivated
by something. Devoting time to the people and
hobbies you love creates needed balance, because
your happiness is even more important than your
paycheck.

Life is about love, last minutes and lost evenings,
About fire in our bellies and furtive little feelings,
And the aching amplitudes that set our needles all
a-flickering,
And help us with remembering that the only thing
that's left to do is live.
- Frank Turner, I knew Prufrock Before He Got Famous

Jenna Charlton
Testing leader,

test strategy expert

We reveal
context

We share
information

We deliver
insight

Test strategy

We improve
teams

We interact
thoughtful

We promote
awareness

Flexible Approach in Software Testing

FAST

Bas Kruip & Carlo van Driel

35

We reveal
context

We share
information

We deliver
insight

Test strategy

We improve
teams

We interact
thoughtful

We promote
awareness

Flexible Approach in Software Testing

FAST

Bas Kruip & Carlo van Driel

36

37

38

innovation events
engineering training

Product Vision
Design Sprints

Consulting, Coaching, Training &
Expertise Integration for

Agile Quality Practices

Agile Transformation &
Scaling Agile

Requirements & Backlog Re�nement

Software Testing (Automation,
Mobile, Performance, Security)

Arti�cial Intelligence (Applications,
Data Services, Testing)

Agile Testing Days
Community Meetups

trendig.com

your leading
technology services provider

