
1

AI, automation, culture,
and the road to inclusive,
resilient software.

Software
accessibility
includes gender
diversity

Meaningful
Metrics

How I build my
own GenAI test
data generator

AI vs Gilded Rose:
Future of Testing or
Just a Thorny Path?

July 2025

No. 03

2

3

EDITORIAL

The summer has arrived, and the solstice has
quietly passed. Life begins to slow down a little, and
so does the pace of work.

I’ve been part of this profession for nearly three
decades, and I can’t remember a time when so
much was shifting and so quickly. It’s not easy to
keep up, especially when daily work, family life,
social connections, and your own space to breathe
are all happening at once.

With this edition, we simply want to offer you a few
reflections and stories. Something to take in at your
own rhythm, without pressure.

Learning has always been important, but these days
it feels absolutely essential. If you're curious, have

a look at the trainings we offer at trendig. And just
so you know, when you book a training with us, you
also receive a free online pass to the Agile Testing
Days. For many teams with limited budgets, that’s
a valuable way to make learning accessible and
inspiring.

Wishing you a beautiful summer. May you find time
for sunshine, for your people, and for the things
that matter most.

All the best,

Summer Reflections and
Learning Opportunities

4

In all of our publications at trendig technology services
GmbH, we make every effort to respect all copyrights
of the chosen graphic and text materials. In the case
that we do not have our own suitable graphic or text,
we utilize those from public domains.

All brands and trademarks mentioned, where
applicable, registered by third parties are subject
without restriction to the provisions of ruling
labelling legislation and the rights of ownership of the
registered owners. The mere mention of a trademark
in no way allows the conclusion to be drawn that it is
not protected by the rights of third parties.

The copyright for published material created by
trendig technology services GmbH remains the
author’s property. No material in this publication may
be reproduced in any way or form without permission
from trendig technology services GmbH, including
other electronic or printed media.

The opinions mentioned within the articles and
contents herein do not necessarily express those of
the publisher. Only the authors are responsible for the
content of their articles.

EDITOR

trendig technology services GmbH
Kleiststraße 35
10787 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99

E-mail: hi@trendig.com
Website: www.trendig.com

EDITORIAL

José Díaz

LAYOUT & DESIGN

Yalhen Rudolph

WEBSITE

www.testingexperience.media

ARTICLES AUTHORS

editorial@testingexperience.media

ADVERTISEMENTS

editorial@testingexperience.media

PICTURE CREDITS

©All illustrations in the magazine are designed by Freepik
©Cover designed by Freepik

Impressum

mailto:editorial@testingexperience.com

5

CONTENT

6 10

14 18

20 24

28

38

32

AI vs Gilded Rose: Future of
Testing or Just a Thorny Path?
Christian Baumann

The role of a Product Owner
in Quality Engineering and
Testing
Huib Schoots & Niek van Malsen

Meaningful Metrics
Lisa Crispin

Guarding the Gates: Why
Security Testing Cannot
Replace a Strong Security
Culture
 Yvonne Johnson

Software accessibility
includes gender diversity
Tobias Geyer

Little’s Law: on ready-for…
queues
Antony Marcano & Andy Palmer

How I build my own GenAI
test data generator
Stephan Dreher

Business-Driven Test
Automation with Sahi Pro
Joerg Sievers

3 Lens Quality Coach
Model
Anne-Marie Charrett

6

Author: Lisa Crispin

Meaningful
Metrics

What comes to your mind when someone
mentions metrics? Before you keep
reading, stop and think for a minute.

What metrics does the team you're working with
now, or the last one you worked with, use? Are they
helping (or did they help?) Organizations often
gather metrics without much thought about how
they will be useful.

Sadly, metrics are often used in destructive ways. I
encountered a company where testers' performance
reviews were based on the number of bugs they
found. And, developers' performance reviews were
based on how many bugs were found in their code.
How well do you think testers and developers got
along in that company?

That said, if our team or our organization wants to
improve how we work, we need to try experiments.
To know whether an experiment's hypothesis is
proving to be correct, we have to measure progress

in some way. When used with thought and care,
metrics guide our efforts to continually improve.

Track your improvement
experiments - step by step
Metrics measure progress. Modern software teams
want to continually improve. The first step has to
be deciding what you want to improve next. In my
experience, the most effective way to decide this is
through retrospectives.

After everyone has a chance to vent about
their frustrations, and hopefully to celebrate
achievements and contributions, figure out the
biggest blocker to your improvement goals. You can
do this by dot voting. Next, discuss what you might
try to make that problem a little smaller.

https://www.mountaingoatsoftware.com/blog/four-quick-ways-to-gain-or-assess-team-consensus

7

"Lead time indicates
how fast a team can
get feedback from
production, once they
have finished a new
change."

When you come up with a change or technique to
try to chip away at the biggest obstacle, design a
small experiment to do together for the next two
to four weeks. Create a hypothesis that includes a
measurement to show whether your experiment is
succeeding.

Review progress at the next retrospective. Based
on your hypothesis measurement, decide whether
to continue the experiment, tweak it, try a new
experiment, or start working on another problem

which is now the biggest one. Move towards
your team improvement goal, one step at a time.

Metrics that help in many
contexts
All that said, I do know of some basic metrics that
are useful in a lot of different organizations. Many
organizations of all sizes find value in using these
four "key metrics" identified by extensive research
over the past ten years by Google's DORA research
program. These provide a practical way to measure
process quality, and they have been proven to
correlate with team performance. Here's a quick
summary:

LEAD TIME FOR CHANGES

This includes the time between committing a
change (code or configuration) to the repository,
and deploying it to production. I found this one
confusing at first, because my own teams had a
different definition of lead time. DORA's definition
includes the time from the start of a merge request:

code review, merging to trunk, running the
continuous integration and deployment pipeline,
and other stages needed through the deploy to
production. Note that deploying does not mean
that the change is released to customers. Release
strategies such as feature flags and canary releases
enable safe deployments.

This metric is focused on the deployment pipeline,
because that is a key indicator of team and
organizational performance. Lead time indicates
how fast a team can get feedback from production,
once they have finished a new change. The goal here
is that over time, this lead time should decrease,
while your team's performance improves. Some
ways to shorten lead time include:

•	 Identify bottlenecks in the processes
•	 Breaking the changes down into smaller batches
•	 Adding automation
•	 Increasing tester/developer collaboration
•	 Improving the performance of your pipelines

DEPLOYMENT FREQUENCY

This metric measures how frequently and
consistently an organization successfully deploys
to production. By shipping small batches of changes
frequently, an organization reduces risk.

Small batches allow teams to work at a sustainable
pace, and have a better focus on what is valuable
to customers. Shipping small batches frequently
- weekly, twice a week, daily, even multiple times
per day - is the secret known by high-performing
software teams. Practices that lead to more frequent
deployment include:

•	 Adding automated tests
•	 Adding automated code validation
•	 Breaking changes down into smaller batches

FAILED DEPLOYMENT RECOVERY TIME

How long does it take your team to recover when
a deployment to production causes a failure? This
is the time from when you notice the problem,
investigate it, and do whatever is needed to correct
it. A wide range of development and testing practices
affects this metric. It's a good indicator of software
stability and team agility.

https://www.youtube.com/watch?v=p3BUd1CUbiY
https://agiletestingfellow.com/blog/post/learning-and-adapting-in-the-holistic-testing-model
https://dora.dev/
https://dora.dev/

8

Delivering small batches frequently lowers risk, and
allows the team to recover from failed deployments
more quickly. That means happier customers.
Organizations need the right telemetry so that they
learn about any production incidents quickly. They
need a good safety net of trustworthy automated
regression tests. Teams need good working
agreements on how they respond to production
issues. And they need to practice using those
practices with simulations.

So many quality considerations go into a team's
ability to respond quickly to production failures.
High quality documentation is a must. A code
base that is easy to understand and update is also
essential. These metrics are all intertwined - you
need a short lead time for changes in order to get
fixes out to production fast. All of these factors
mean less pain for customers. Here are some steps
to take to shorten this recovery time:

•	 Improving the observability into the production
environment

•	 Improving response workflows
•	 Improving deployment frequency and lead time

for changes so fixes can get into production
more efficiently

CHANGE FAILURE RATE

This metric, which reflects both process and
product quality, is defined as a percentage of
deployments that cause a failure in production
such as downtime, degraded service, or a need to
rollback the deployment. In other words, how often
does a deployment to production fail? Teams with a
high change failure rate may be spending more time
fixing problems than developing new features.

Teams practicing continuous delivery may see
more failures, but an overall better failure rate.
For example, if a team deploys five changes a day,
that means 25 changes in a week. If five of those 25
changes fail, the rate is 20%. If a team deploys only
once a week, and that change fails, they have a 100%
failure rate. So, don't aim for fewer deployments.

This metric reflects both product and process
quality. The synergy of combining change failure
rate with time to restore service is powerful. Teams
that spend a lot of time fixing problems have less
time to devote to new features. All the leading
development practices that help teams produce
maintainable, testable, operable code, building
quality in and testing effectively, lower the change
failure rate.

Again, delivering small batches of changes more
frequently is the key for better results. Other ways
to improve this metric:

•	 Finding the right balance between stability
(as measured by change failure rate and failed
deployment recovery time) and throughput
(deployment frequency and lead time for
changes)

•	 Improving the efficacy of code review processes
•	 Adding automated tests (this helps with so

much!)
•	 Breaking changes down into smaller batches

DO YOU NOTICE ANY PATTERNS?

Process and product quality, as reflected in these
key metrics, can be greatly improved by deploying
smaller batches of changes more frequently
to production. That is the basis for modern
development practices that are iterative and
incremental, what many people call agile.

We've known for decades that having trustworthy
automated regression tests gives teams confidence
to make small changes quickly. Looking for
bottlenecks in your team's path to production, such
as code reviews, is a great way to start improving.

TRACKING THE DATA

Measuring doesn't have to be complicated. Sure, it
is nice to instrument your code to capture data and

"Teams that spend
a lot of time fixing
problems have less
time to devote to new
features."

https://testerbychoice.wordpress.com/2021/02/03/a-short-answer-on-getting-started-with-observability-as-a-qa/

9

Lisa Crispin
Co-founder

@ Agile Testing Fellowship, Inc.

events in log files. There are many tools available to
turn that information into highly visible dashboards,
alerts and analytics. And, you can simply track
information such as the four key metrics or
whatever you are using to track progress in a small
experiment in a spreadsheet or a document. If you
do decide to try the four keys, DORA provides a
form where you simply answer four questions and
see how your team or organization compares with
similar ones.

WHAT TO AIM FOR

The 2024 DORA research report notes that elite
improvement is more important than elite
performance. Start conversations in your team about
what you'd like to improve next. Brainstorm ways
you could make your biggest problem a bit smaller.
Try small experiments together, making sure to
specify your expected result in a measurable way.

See if metrics that have proven to be useful across
many types of organizations might apply in your
own context. Use your retrospective workshops to
evaluate whether the measurements being tracked
are helpful.

The DORA Core Model, showing where the key metrics reflect performance

https://dora.dev/quickcheck/
https://cloud.google.com/devops/state-of-devops
https://conversations.dora.dev/?q=38ai7kb
https://dora.dev/research/

10

AI vs Gilded Rose:
Future of Testing or
Just a Thorny Path?

Christian Baumann
Principal Test Architect

@ MaibornWolff GmbH

P icture AI stepping into the role of testers,
creating test cases and exploring their
potential to support the testing process. This

article puts them to the test with the quirky and
infamous Gilded Rose Kata, to see if these AI tools
can actually lend a hand in testing or if they’ll trip
over their own code.

Author: Christian Baumann

11

THE GILDED ROSE TREASURES

The Gilded Rose Kata, a popular coding exercise,
is about an inventory management system with
complex rules and changing business logic. Its
unclear requirements are similar to real situations,
making it a good way to test how well test cases are
designed. For testers, the task is to make automated
regression tests that keep new features working
without breaking old ones. The different items
and their special behaviors, such as the legendary
"Sulfuras" or the fragile "Aged Brie," add challenges
to the testing process.

This task not only checks developers' ability to add
features without breaking the old ones but also
pushes testers to think about edge cases, tricky rules,
and keeping the system working as expected. By
solving these problems, the Gilded Rose shows what
happens in real software systems, where unexpected
interactions often appear. For testers, this means
using tools and methods that go beyond manual
work, opening the door for approaches like AI.

MACHINE DIVINATIONS

The main focus of this work was on three different tasks, each meant to test a specific part of AI’s abilities
in testing. In the first task, LLMs were asked to create test cases using only the Gilded Rose’s requirements.
The second task was about making automated tests from these requirements, and the third skipped the

THE TESTER’S GRIMOIRE: GOLDEN MASTERS AND

AI VALIDATION

To evaluate the outcomes of the different LLMs, we
used golden masters: Here, reference results under
set conditions serve as the standard to compare
later test results. This method allowed for a steady
check of AI-created test cases. Each test case was
carefully made to include starting and final values,
expected behaviors, and the rules for each item type.
This strong setup gave a good basis for checking
how AI performs.

Golden master testing works well when
requirements are complex or changing. It acts as a
safety check to make sure any system changes can be
compared to an existing standard. This method not
only makes it easier to find problems but also gives
a way to check if AI-made test cases match what
is expected. In the Gilded Rose test, these golden
masters were key in seeing how AI understood and
applied tricky requirements.

Criterion/Model ChatGPT o1 ChatGPT 4o ChatGPT 4o mini Google Gemini Llama3.2 3B Mistral Nemo 12B

Described reqs? Yes Yes Yes Yes Yes Yes

Described test? Yes No No Yes No No

Grouping Yes Yes Yes Yes Yes No

Number of tests 17 - - 13 - -

Grouping auto Yes Yes Yes Yes No No

Numer of tests
auto

16 16 17 9

Runnable? Yes Yes Yes No Yes Yes

Passing? No Yes No Yes No No

12

requirements, asking the AI to automate pre-made
reference test cases.

The results were revealing. When creating test cases
from requirements, the LLMs showed
mixed results. Larger models, like ChatGPT 4.0 and
Google Gemini, showed a decent understanding of
goals and testing methods, such as boundary value
analysis and equivalence partitioning. Smaller
models, however, often failed to meet even simple
expectations, producing outputs that were
incomplete or off-topic.

In automation, the gap between models became
clearer. Most models could write code that was
correct in structure, but the ability to make working
tests varied a lot. Google Gemini often stood
out with its careful approach, adding comments
and suggesting fixes. But even the better models
sometimes misunderstood requirements or made
wrong guesses, showing that human review is still
needed.

The third task—automating ready-made reference
test cases—showed an interesting pattern. With
clear data and instructions, larger models did well,
turning test cases into working code with good
accuracy. But their habit of changing instructions
instead of following them exactly led to issues,
especially in edge cases like the special behavior of
"Aged Brie."

Some models showed creative thinking, offering
edge cases or improvements not mentioned in the
requirements. While this creativity is a good sign,
it also shows why testers need to check AI results

closely. Trusting these outputs without checking
could miss problems or cause unexpected issues.

THE KEEPERS’ JUDGEMENT

Several important lessons came from these
experiments. First, the quality of AI results depends
a lot on how clear and well-structured the input
data is. Unclear requirements or instructions often
caused mistakes, showing how important it is to
write good prompts.

Second, while LLMs can speed up some parts of
making and automating test cases, their results must
be checked carefully. This is especially true with
complex requirements, where misunderstandings
can easily happen.

Also, the back-and-forth process of working with
AI became clear. Writing good prompts often needed
multiple tries, like having a conversation with the
model. This process shows that AI works better as a
partner to testers rather than a one-time fix.

Lastly, not all LLMs perform the same. Bigger
models with more memory and better reasoning
skills often did better than smaller ones. This
difference suggests that investing in better models
or hardware might be a good idea for companies
wanting to use AI in testing.

"Even the better
models sometimes
misunderstood
requirements or made
wrong guesses, showing
that human review is
still needed."

13

14

Would you create a user account on a
website which offers only one salutation
- and it's not the one you use?

Or would you accept that you have to delete your
user account on a website and create a new one,
losing all your data because you made a mistake in
your personal data and can’t correct it?

Would you be okay with lying about yourself because
limitations in software force you to do it?

While those situations may sound unrealistic
or outright ridiculous they’re a sad reality for a
portion of the people using software which deals
with personal data. But why - and what can
we as software testers do to improve this?

IT’S NOT AN EDGE CASE

While there is data on LGBTQIA*1 people and their
distribution in the overall population, specific
data on the distribution of trans and non-binary
identities is scarce. Census data from Canada, the
US, England and Wales shows that between 1:300

Author: Tobias Geyer

Software accessibility
includes gender
diversity

to 1:167 people don’t identify with the gender they
were assigned at birth. Not all of them are able
to live as their real gender or change their name
or pronouns and not all of them use the software
you’re working on. Then again most software deals
with more than 300 registered users, so there’s a
real chance that some of them are trans2 or gender
diverse.

Which means that software which doesn’t actively
take gender diversity and the needs of LGBTQIA*
people into account will not be usable to parts of the
potential user base. Let’s take a look at problems in
existing software, improve our tester knowledge
and learn about possible solutions.

A LACK OF GENDER OPTIONS / SALUTATIONS /

PRONOUNS

When signing up for a user profile there is a lot of
data to enter - first and last name, address, billing
data and so on. Often either a gender or salutation
must be chosen from a predefined list, sometimes
pronouns must be given as well.

15

In case the salutation is limited to a predefined list
of “Mr” / “Ms” or the gender is limited to “man”
/ “woman” setting up an account which matches
their true self is impossible for people who don’t
fall into those binary categories, e.g. non-binary3
folks. The same happens if there’s a predefined
list of pronouns. This is not a theoretical problem,
a non-binary friend of mine can’t order from
the online store of a large optician franchise in
Germany because it’s not possible to use a gender
neutral value for the mandatory salutation. There
are two solutions to that: Don’t ask for gendered
data at all, chances are you don’t really need it. If
you absolutely have to ask for it, give users a free
text option and make sure that the software deals
well with the fact that some users may leave it
empty. There’s even a legal component at play. In
January 2025 the European Court of Justice ruled
that the french railway company SNCF may not ask
for a gender when booking train tickets since data
collection under GDPR "must be adequate, relevant,
and limited to what is necessary in the light of the
purposes for which those data are processed." So
if the first solution seemed impossible to you, that
ruling might be a good opportunity to reconsider it
before you’re forced to by a lawsuit.

UNCHANGEABLE PERSONAL DATA

Just like some people move and have to change the
address in their user profile, some people change
their name or their gender. However while changing
the address themselves is mostly possible for
users, changing their name or gender often isn’t.
If they’re lucky, people can get those changes done
by contacting a human support person, if they’re
unlucky, they have to delete their user account and
create a new one.

Having to get in touch with a support person
may seem like a usability issue, a cumbersome
workaround. It’s a problem which is well known to
people who got married or divorced and changed
their last name. For trans people it’s more than
that because it requires them to mention their
deadname3 to another human - which is painful to
them. It also puts them at risk of a support person
starting to ask them questions about the change or
be openly hostile towards them. The latter has been
known to happen, especially when making changes

which indicate a changed gender. In addition to
that the sound of a voice is often associated with
a gender, so when calling support on a phone the
requested changes can be rejected because support
staff think that the user has “the wrong voice”.

There’s an easy solution to that: Trust your users
to change all of their own data. There is only a very
small set of situations in which it’s required by law
to use the exact legal name of a user, so requiring
the user to supply their legal name should be a
last resort. Using Germany as an example, those
situations are when in front of a court, international
travel and being the CEO of a DAX company. If the
software covers one of those situations, have a
process in place which allows users to provide
the necessary documents and request the change
electronically. Even then the software may run into
other issues, see below.

USERNAMES OR EMAIL ADDRESSES AS USER

IDENTIFIERS

From a software development perspective it may
seem like a good idea to use an email address or a
unique user name as a primary identifier for data
storage. Which gets problematic quickly when this
primary identifier can’t be changed and is visible
to the end users. Sometimes users are forced to use
that identifier during the login process. Many email
addresses contain the name of the user, some user
names contain gendered terms (like “guy”) and all
of those can become outdated as the user discovers
more about themselves and their gender identity. As

"Setting up an
account which
matches their true
self is impossible
for people who don’t
fall into those binary
categories."

16

shown in the previous chapter, being able to change
this identifier themselves is crucial for users.
Even if the identifier can only be seen in the backend
by support staff it can cause problems to the users
because it reveals sensitive information about them
and their past without their consent.

The solution to this is simple: Make usernames and
email addresses changeable by the user.

USING GENDER AS SUBSTITUTE DATA

A common trap software developers fall into is the
assumption that knowing the gender of a person
enables them to derive the preferred salutation of
that person, their pronouns and even information
about their body. At my last visit to the dentist I
was asked to fill out a digital form with my personal
information and as soon as I marked my gender as
“male” I was no longer able to answer the “are you
pregnant” question.

Trans men exist and can get pregnant - just as trans
women exist who can’t get pregnant. Some cis6
women can’t get pregnant either so connecting this
question to the “gender” data is at best careless and
at its worst endangering the wellbeing of the person
being asked. As software testers we’re used to asking
clarifying questions about vague statements in

requirements or acceptance criteria. We know that
precise language matters and we need to approach
gendered data the same way.

Which is already the solution to this problem:
Don’t make assumptions and don’t derive gendered
data. Ask for it precisely and openly. “Could you
be pregnant” may be the correct question to ask in
some contexts, “do you have a uterus” may be valid
in others while “what’s your salutation” is valid
in even others. If you need all of these data points,
don’t hesitate to ask for each one individually. You
might be surprised how often the answers from one
person don’t match your assumption.

INTRANSPARENCY ABOUT DATA USAGE

As a general rule it’s best to trust users to enter
the correct data, especially their name and
gender marker. However that can cause problems
depending on how the data is used and who gets
access to it. Some people change their name socially
but don’t take the steps to change it legally. Others
change their name only in certain social settings
and use their assigned name in others.

If the software used by university students sends
report cards to their parents but the student hasn’t
told their parents about their changed name, this
can lead to them being involuntarily outed7. If the
booking process for a rental car checks if there’s a
valid drivers license under the user's name against
government systems using the name given by the
user may result in the booking being declined.

"Be transparent
about what the data
is being used for, for
example by adding
the hint 'this name
will be shown on your
report cards'."

17

Glossary:

1. LGBTQIA* - An acronym for “Lesbian Gay Bisexual
Trans Queer Intersex Asexual”, the “*” indicates
that there are more identities which fall under this
umbrella.

2. trans - An adjective describing people who don’t
identify with the gender they were assigned at birth.

3. non-binary - An adjective describing a person
who does not identify (exclusively) as a man or a
woman. Non-binary people may identify as being
both a man and a woman, somewhere in between, or
as falling completely outside these categories.

4. deadname - The name that was assigned to a
(trans) person after birth but which they’re no
longer using. In case of trans people this name
often doesn’t match their gender identity and being
confronted with the deadname often causes them
distress.

5. gender assigned at birth - The gender a
person was assigned after birth based on physical
characteristics of their body. This can be different
from their gender identity.

6. cis - An adjective describing people who identify
with the gender they were assigned at birth.

7. to out someone - Exposing someone’s lesbian,
gay, bisexual, transgender or non-binary identity
to others. Outing someone can have serious
repercussions on their employment, economic
stability, personal safety or religious or family
situations. On top of that, outing someone without
their consent is illegal in some jurisdictions.

Tobias Geyer
Tester, Conference speaker

@ VECTOR Informatik

The solution to this consists of three parts: As
before, use precise language like “name on your
driver's license”. Be transparent about what the
data is being used for, for example by adding the
hint “this name will be shown on your report cards”.
Finally allow the user to enter their name and their
legal name separately if the latter is needed.

CONCLUSION

As testers it’s part of our job to know that things can
be different. We don’t just test on one browser or
screen size because we know that the environment
where the software is used can be different. We
keep an eye on accessibility support because we
know that the needs of our users can be different.
Hopefully you will also keep an eye open on how
well your software supports gender diversity from
now on.

Ignoring the gender diversity of your users can put
hurdles in their way, similar to those put up when
accessibility needs are ignored. Sometimes users
will find workarounds to those hurdles, sometimes
users will just not use the software and sometimes
you may find yourself in a lawsuit because of it.
These risks can be mitigated and the problems
and solutions shown in this article can serve as a
starting point for that.

Finally, making sure that software is accessible for
everyone isn't just a way to avoid lawsuits. It's the
ethically right thing to do.

18

In a large corporation, things are different
than in a small or medium-sized enterprise,
or even in a startup. Departments are larger,

and business and technical knowledge is more
distributed. Having interdisciplinary teams, where
Business Analysts (BAs), Developers (DEVs), and
Testers (QA) form a unit, is already a very advanced
structure. How can you get BAs and QA involved in
testing or even test automation early on in sprints
of, for example, three weeks, so that you don’t end
up dumping the entire workload from DEVs onto
the other two roles?

For example, if the „three amigos“ can use the

Author: Joerg Sievers

same tool from different perspectives. BAs define
the test objectives, the expected parameters, and
the keywords for the test steps in a spreadsheet,
or even entire sentences as keywords, together
with the other two roles. The focus is on business-
critical use cases, not small units that DEVs could
easily test themselves!

Initially, the test steps are red because they are
not yet implemented in automated functions. DEVs
could now program the functions, or the other two
roles could record the individual steps, provided the
SUT already has the functionality. Once recorded,
a test step can be reused in all other areas of the
project. We teach the teams to always apply AAA
(arrange, act, assert or in German "Schienen-
Ersatzverkehr”, setup, execute, and verify) in each
step and, if possible, to always subdivide it into
these small parts to ensure reusability. The steps
focus on "Where am I? Am I in the right place in the
program?" (Arrange/Setup) to perform the action
(Act/Execute)? Verify that the result of the action
step has been fulfilled (Assert/Verify).

This way, the teams get the test cases running first.
Once everything works, we try to make any steps
that might fail and need a bit more attention more
robust. Finally, any parameters (names, business
data, etc.) are stored in so-called Data Drives (these

Business-Driven
Test Automation

with Sahi Pro

Joerg Sievers
Test Service Specialist

@ SIGNAL IDUNA Gruppe

How to win business departments
for test automation

19

can be CSV files, databases, etc.). This separates the
test data from the test cases and allows us to use
the same tests with different data constellations
in different environments (test, integration,
acceptance).

BAs and QAs mostly look at the spreadsheet and
see little of the functions in the background, which
are intelligently recorded in JavaScript by the tool.
During recording, the verification steps (Assert/
Verify) are directly included, and selectors (called
accessors) are stored in a central project file and
given a synonym. So, if you need to change an
accessor, you do it once, and all tests using the same
accessor fix themselves. The accessor repository
layer thus serves to make the tests adaptable with
minimal effort.

When DEVs read the above procedure, they
inevitably think of behaviour-driven development
(BDD). That’s why this approach is called BDTA,
business-driven Test Automation, because the
basis of these acceptance tests lies in the business
logic of mostly critical use cases and checks the
behaviour of the system.

Using the approach briefly outlined here, we have
succeeded in getting the "business department"
or rather its representatives, the BAs, enthusiastic
about helping with test automation in a dozen

projects. They feel comfortable with the spreadsheet
view and assisted recording of test steps, as do
the DEVs who can do the whole thing in their IDE
(Integrated Development Environment, e.g. IntelliJ).

By integrating the projects into ANT, Maven or
Gradle, you can run the tests directly from the IDE
on a remote "runner" and get the results back into
the IDE. This enables DEVs to avoid regressions
at the push of a button when they adjust business
processes. This doesn't mean renaming a button
but breaking the process. You don't need to tell
the testing tool about anything else, because it
automatically recognizes any cosmetic changes and
can still execute the business transactions.

Tests that DEVs can run directly without considering
any external systems or operating complex upload
and download processes are not executed in this test
stage, but, for example, with Cypress, Playwright
& Co. However, the advantage of involving the
business departments/BAs in the acceptance tests
is obvious: you can finally focus on exploratory
testing of new functionalities and no longer must
verify that the business-critical processes still
work.

Sahi Pro allows teams to use this approach to test
different technologies and frameworks1 without
changing the tool or the way to work.

[1] Image Sahi Pro

20

Guarding the Gates:
Why Security Testing Cannot

Replace a Strong Security Culture
Author: Yvonne Johnson

Repeat after me, dear reader: It does not
matter how secure my code or configuration
is if IT security processes and policies are not

refined nor adhered to. This one simple truth has
been the harbinger of many a success story for my
team, where we were able to gain a foothold into the
customer’s network over the internet, escalate our
privileges, move to further servers, and ultimately
gain the keys to the kingdom.

Hi, my name is Yvonne Johnson, and I have seven
years of experience in penetration testing and red
teaming (see the table below for more information).
I am currently working at Deutsche Telekom
Security GmbH as a Senior Red Teamer. There, I
conduct adversary simulations for companies both
large and small, in order to improve their defenses
and detections against real-world attacks. As a red
teamer, I have the unique opportunity to observe a
company’s security posture from an organizational

21

level. Over the years, it has become clear that
testing and culture go hand in hand when it comes
to protecting our assets.

I understand the argument I am making in this
article sounds like common sense. However, the
prevalence to which this problem has allowed
my team to overtake entire organizations within
days has convinced me that this point needs to
be shared with the masses. So, please put on your
metaphorical hacker hoodie, dear reader, and come
with me on a little red team journey.

INITIAL ACCESS

We find ourselves in front of a computer screen. The
browser is open to the login page of an application
belonging to our customer. The software is up-
to-date, and there are no known vulnerabilities.
We do what any good hacker would do and type in
“admin” for both the username and password. A
second later, the page reloads and—bingo, we’re
in! With our newfound access, we click through
the admin portal and discover that the application
has built-in functionality that can be misused to
execute code on the customer’s server. Utilizing
this function, we run our malware and begin to send
it commands through our Command & Control (C2)
infrastructure.

Penetration Testing Red Teaming

Finds technical vulnerabilities. Finds technical and organizational vulnerabilities.

Tends to have a smaller scope of one system or application. Covers the entire organization.

Goal is to uncover as many weak points and misconfigurations
as possible.

Goal is set by customer (e.g. obtain domain admin privileges) and the
red team focuses only on the vulnerabilities that help them achieve
this specific goal.

Carried out in development or test environments. Carried out in production environments.

Can be conducted by one person in one to two weeks.
Conducted by a team of people over a longer period (from weeks to
months depending on which scenario the customer would like to
have simulated).

Defenders are notified of the test beforehand. Incident
response processes are not activated if an alarm is triggered.

Defenders are not aware of the test. The red team attempts to remain
undetected. The red team may purposely trigger an alarm to test
incident response processes.

Table 1: Differences Between Penetration Testing and Red Teaming

PRIVILEGE ESCALATION & LATERAL MOVEMENT

The C2 communication allows us to search the
compromised machine for any data that can help us
achieve our goal. In a file named “config.yaml”, we
discover credentials for an Active Directory service
account. The service account is allowed to connect
to SMB shares open to all user accounts in the
network, one of which contains full server backups
in the form of .VHDX files. We download a server
backup file and extract the local administrator
password hash, granting us the ability to log on to a
new server as an administrative user.

DOMAIN DOMINANCE

Since we have administrative privileges, we can
extract the password hashes on the new server, as
well. It seems a domain admin account has logged
into this server before, and their password hash
in included in the results. Jackpot. We have gained
domain admin privileges without exploiting a
single technical vulnerability.

It does not matter in this scenario if the web
application has undergone extensive testing to
remove all software vulnerabilities or if there are
no Active Directory misconfigurations for the
attacker to exploit. Since a strong password policy

22

Yvonne Johnson
IT Consultant

was not enforced on the web application, we were
able to guess valid credentials and misuse a built-
in function. Hardcoded credentials in a file stored
on the server allowed us to escalate our privileges
because a secrets management strategy was not in
place. Sensitive files were available to every user in
the domain as an authorization and authentication
concept was not considered when exposing the
SMB share. Finally, we were able to completely take
over the domain as best practices like not logging
into servers with a domain admin account were not
followed.

I could name many other examples such as finding
valid SSH private keys to important servers in public
Git repositories or useful application credentials in
internal company wikis on public pages, but the
point remains the same. When processes and policies

"Be transparent
about what the data
is being used for, for
example by adding
the hint 'this name
will be shown on your
report cards'."

are not implemented, organizational weaknesses
that are just as harmful as technical vulnerabilities
arise. Security testing will always play a vital role
in protecting our applications and infrastructure
from malicious actors, but it alone is not enough
to prevent successful attacks. We need developers
who think twice before choosing a weak password
or exposing credentials in a public manner. We
need administrators that understand that security
hygiene is as equally important as secure coding.
We need managers to motivate teams to appreciate
and apply security policies. In other words, we must
foster a culture where each employee knows their
part in keeping a company safe.

Now, with that said, go forth and change those
passwords.

23

24

The role of a Product
Owner in Quality
Engineering and Testing
Author: Huib Schoots & Niek van Malsen

The Product Owner (PO) is responsible for
maximizing the value of the product and the
work of the Development Team. Their main

responsibilities are:

•	 Visionary Leader: defines and communicates
the product vision and strategy to ensure
alignment with business goals.

•	 Key decision-maker: Balances stakeholder
needs and technical constraints

•	 Backlog Management: Prioritizes and refines the
product backlog based on value, dependencies,
and risk.

•	 Stakeholder Collaboration: Engages with
stakeholders to gather requirements, provide
updates, and ensure continuous feedback.

•	 Quality: The delivered product meets quality
standards and customer expectations.

•	 Adaptability: Continuously adapts to changes
and new insights to mitigate risks and improve
the product.

Recently there was a survey on LinkedIn2 on who
is responsible for Quality. Although the team is
responsible for doing the work, the PO is responsible
for the product quality, since they decide about what
work needs to be done and what the priorities are.
POs play a vital role in building quality products. To
be able to explain this well, let’s first look at how

software development works.

SOFTWARE DEVELOPMENT IN THE VUCA WORLD

Software development must deal with the VUCA
world:

•	 Volatility: The dynamic rate of changes requires
continuous adaptation and innovation

•	 Uncertainty: The unpredictability of events and
issues in software development necessitates
flexible planning and risk management

•	 Complexity: The complexity of interdependent
systems and components require a holistic
approach to problem-solving and a deep
understanding of the IT landscape

•	 Ambiguity: The difficulty in accurately assessing
reality in a complex and volatile landscape
means that DevOps teams must be prepared to
handle ambiguity and make informed decisions

VUCA highlights the need for (DevOps) teams to be
agile, adaptable, and resilient in the face of rapid
changes, unpredictability, complexity, ambiguity,
confusion, new insights, and half answers. As a
result, we face considerable risks. It underscores the
importance of continuous learning, collaboration,
and effective risk management to navigate the
challenges and deliver quality software. We deal

This article highlights the critical role of Product Owners in Quality Engineering and Testing. To learn more
about what Quality Engineering is and how it aligns with testing, see the blog post “How testing aligns with
Quality Engineering1” written by Boyd Kronenberg and me.

1. https://labs.sogeti.com/how-testing-aligns-with-quality-engineering/

2. https://www.linkedin.com/feed/update/urn:li:activity:7292666987741130753

25

with users and clients who do not know exactly
what they want or cannot explain it well. With IT
teams that do not always understand the business
well. How do we deal with these risks?

SOFTWARE DEVELOPMENT IS ABOUT VALUE AND

RISKS

As a team, gaining insight into value and risks
requires a detailed understanding of the workflows,
the product, and the risks surrounding it. Teams
collaborate to solve problems that threaten the
value of the product or the timely, successful
completion of the work.

Risk-based thinking involves organizing the
software development process around suspected
risks. This means conducting risk analyses
continuously and creating a Quality Strategy for
the entire software delivery process. Risk-based
thinking is a powerful approach to mitigating
risks and delivering quality. Besides providing
insight into risks, it also deepens understanding
of the product and promotes "common or shared
understanding." This shared understanding helps
reduce misunderstandings, improve effectiveness
(and efficiency in the long run), and deliver quality
outcomes. It is essential for effective collaboration
and successful project delivery. According to the
State of Teams research conducted by Atlassian
in 20233, teams with shared understanding better
meet stakeholders' expectations, use resources
efficiently, develop new ideas, take pride and find
a sense of purpose in their work, and experience
increased motivation, energy, and enthusiasm.

THE ROLE OF A PO IN THE VUCA WORLD

POs are the ones responsible for backlog
management. They must ensure the team achieves
a shared understanding of the work items.
Unfortunately, many refinements are too short,
poorly prepared and have insufficient outcomes like
vague requirements, missing acceptance criteria
and team members not fully understanding what
the epic/feature/story is about. Feeling pressured
to deliver, teams do not take enough time to learn.
Eventually this will slow them down by delivering
lower quality. Our experience is that the team
members often feel pressured to deliver and do

not speak up when they do not fully understand
what is expected from them. We also see POs focus
on delivering features too fast. They push to do
efficient and fast refinement, which often means
going through stories as fast as possible. Instead of
focusing on sustainable quality, which in the long
run is cheaper, faster and leads to more business
value and happier customers and stronger teams.
Remember that deep learning takes time: so, start
promoting practices like discussing risks, asking
more questions, visualizing where possible and
creating acceptance criteria.

SOME GOOD PRACTICES WHICH POS CAN ADVOCATE

•	 Reducing Work in Progress (WIP) and slicing
stories as much as possible

Essential practices for maintaining a sustainable
pace and delivering quality software. WIP limits
help teams avoid overload, ensuring tasks are
completed effectively by preventing bottlenecks,
reducing context switching, and shortening lead
times. Small stories enable teams to manage
risk and receive quick feedback. According to the

3. https://www.atlassian.com/blog/leadership/shared-understanding

4. DORA | Accelerate State of DevOps Report 2024

26

State of DevOps report from 20244, this practice
helps teams break down larger tasks into smaller,
manageable pieces, allowing for more efficient and
effective development. These practices help teams
deliver incremental value, reduce complexity, and
improve their ability to respond to changes.

•	 Risks analysis

Conducting risk analysis is
crucial for teams to identify what
needs action and to deepen their
understanding of the product.
Building quality software
requires both solution-oriented
and problem-oriented thinking.
While most team members adopt
an optimistic mindset, asking
questions like "How should this
work?", testers often take on
a pessimistic mindset, asking
"What if X happens?". Both
mindsets are essential for developing quality
software.

Discussing risks within the team leads to better
software by exposing the most significant pitfalls.
Savvy POs engage in risk discussions with the team
to enhance their understanding of the product and
the necessary activities for delivery. This helps
prioritize quality measures effectively. However,
this approach may extend the refinement process
which is worthwhile because learning takes time.

•	 Feedback loops wherever possible

Teams should implement as many feedback loops as
possible. While this may initially seem inefficient,
it will significantly speed up teams over time. It
enables teams to continuously improve the product
and/or themselves. Common scrum ceremonies are
valuable feedback loops, but there are many more:
refinements to ensure the team understands what
to build, clean coding: code reviews, pull requests,
static code analysis, sufficient unit tests in
development pipelines, continuous integration to
check if the code merges without issues in pipelines
with automated regression checks at various levels,
testing, and monitoring.

Unfortunately, Product Owners (POs) are often

not involved in developers’ workflows, which is
a mistake. Technical debt results from choosing
quicker delivery over clean code and thorough
testing, leading to additional rework and
maintenance challenges in the future. POs are often
unaware of the time and costs involved in fixing
the issues caused by shortcuts. An excellent PO
will consider the risks and costs associated with
repairing technical debt before taking shortcuts.

They know costs are always
higher than expected.

•	 POs are heavily involved in
testing

In many teams, testers are
responsible for deciding if the
product can be shipped. Once the
tests are completed, the story
is marked as "done," and the
product is ready for shipment.
However, it should be the PO

making this decision. POs should ask the team
to report on three key topics: how the product is
performing, what kind of testing was conducted to
determine this, and what the remaining risks are in
the product and the process. This is known as the
Testing Story. With this information, the PO can
decide whether the product can be shipped.

Discussing testing with the PO helps the team
highlight risks and challenges in testing. The PO
can then help improve testability for more effective
and faster testing or accept the risks involved and
proceed by going slower. The responsibility of
determining "how much testing is enough" should
be a collaborative discussion between the team and
the PO. Testers often tend to over-test, so reporting
on the risks and the testing done helps the team
perform the best possible testing, which is just
enough testing.

•	 Make learning part of the way of working

Better refinements are crucial for fostering common
understanding, but the PO can do even more to
cultivate a learning culture within the team. Here
are some ideas to help the team:
Collaborate with the team to create visual overviews
of the product from various perspectives, such as
architectural models, process diagrams, business

"Building quality
software requires both
solution-oriented and

problem-oriented
thinking."

27

model canvas, flow charts, and mind maps. This
helps the team gain a comprehensive understanding
of the product. Encourage the team to experiment
where appropriate, fostering innovation and
learning. Promote feedback loops, retrospectives,
and reflection sessions to continuously improve
processes. Help the team visualize the value stream,
allowing them to identify and pick up improvement
stories. Also practices like TDD and BDD help teams
learn and create understanding across the team.
Finally, proactively collect customer feedback to
ensure the product meets users’ needs and delivers
the right value.

By implementing these strategies, the PO can
significantly enhance the team's ability to learn,
adapt, and deliver high-quality software.

•	 Mandating quality

Mandating quality is essential for successful
software development. Ensure your team actively
uses the Definition of Ready to verify they are
prepared to start the work and the Definition of
Done to confirm that all anticipated tasks are
truly completed. Foster a learning environment
by making the team a safe space where mistakes
are seen as opportunities for growth rather than
reasons for blame. In VUCA environments, mistakes
are inevitable. Encourage Root Cause Analysis and
blameless postmortems when significant bugs are
found to help the team learn and prevent future
errors. Advocate for code quality and support
refactoring, testing, and automation when
necessary.

WRAPPING UP

Our clients demand faster, cheaper, and more
predictable software delivery. The key to achieving
this lies in adopting a "building quality in" mindset.
This approach ultimately leads to faster, more cost-
effective development, resulting in satisfied clients
and happy teams.

POs play a crucial role in Quality Engineering by
promoting quality products through effective
collaboration. They should encourage risk analysis
to help teams gain a deep understanding of the
product and identify major pitfalls, leading to better
software development and just enough testing.

Additionally, POs should ask the team to report on
the product's status, the testing conducted, and the
remaining risks. This information enables informed
decisions about product shipment, potential
process improvements, and enhanced testability.
By fostering a culture of quality and continuous
improvement, we can exceed our clients'
expectations and deliver exceptional software
products.

Niek van Malsen
Subject Matter Expert in Transformation &

Coaching @ Sogeti

Huib Schoots
Consultant & Quality Coach

@ Sogeti

28

Little’s Law: on ready-
for… queues
Author: Antony Marcano & Andy Palmer

Photo by Bernard Spragg. NZ

When your team introduces a ‘ready for…’ queue
— beware. For example, as developers pull from
the backlog faster than testing can be completed, a
ready-for-testing queue builds. It feels faster but
you’re probably adding costs of delay and causing
the team to deliver less overall. Little’s Law and the
Latency Effect, help us understand why…

LITTLE’S LAW

Little’s Law is a way to understand the relationship
between:

•	 Throughput — how many items of work we can
complete each week (e.g. User Stories)

 "Originally published on ideas.riverglide.com"

•	 Work in progress — all work that has been
started but not finished, even if it’s blocked
waiting for someone or something.

•	 Cycle time — the time it takes to complete a
specific item of work from start to finish (i.e.
deployed to production).

Hopp and Spearman’s book, Factory Physics,
expresses Little’s Law as:

Cycle Time =
Work in Progress

Throughput

29

Consider a team that, at any given moment, has 10
items of work-in-progress. This team completes 10
items of work per week — the team’s throughput.

When developers are able to get through the work
faster than testing can be completed, this creates
spare capacity among the developers. A developer
may then use that available capacity to take the next
item off the backlog. The more work the developers
get through, the more features we’ll have, right?
Wrong — but why?

THROUGHPUT

Firstly, this team’s throughput is constrained by a
bottleneck in their process. Several testing activities
are happening at the end of each item of work and
can’t go any faster, without some investment.
Having more work in progress, even in the best-case
scenario, won’t result in any more being delivered
due to this constraint.

Little’s Law predicts a cycle-time, per item of work,
of 1 week:

WORK-IN-PROGRESS

Meanwhile, the developers are getting through 5
more items per week than can be completed by the
testing team.

With 10 items of work in progress with the
developers and 5 in progress with the testers, we
now have 15 items of work in progress.

CYCLE TIME

With 15 items of work in progress, and the bottleneck
constraining the throughput of the team to 10 items
per week, the cycle-time increases — introducing
costs of delay. Where each item was taking 1 week
before, it’s now taking 1.5 weeks from start to finish:

THE READY-FOR-TESTING QUEUE EMERGES

As developers get through more work, testing is still
only being completed at the same rate as before.
Many teams then introduce a ‘ready for testing’
queue to allow the developers to continue to work
independently of the bottleneck. Why should the
developers slow down because the testing can’t be
completed fast enough? Let’s explore…

10 ÷ 10 = 1 week

15 ÷ 10 = 1.5 week

30

Are the testers manually regression testing every
user story or once per time-box (iteration/sprint)?
Could the developers help by automating more of
that? Are the testers having to perform repetitive
tasks to get to the part of the user-journey they’re
actually testing? Can that be automated by the
developers?

Addressing any of these issues is likely to speed up
your testing activities, opening up the bottleneck.
The result, is that this increases the throughput of
the entire team. Now, taking that next item off the
backlog will actually have the desired effect — more
features than the team has delivered before.

Arguably it’s the handoffs that are at the root
of the problem. However, these handoffs are
a reality for many teams. Little’s Law and the
Latency Effect aren’t just restricted to teams with
handoffs. Regardless of your process, increasing
work in progress beyond the throughput that the
bottlenecks in your process allow, is a false economy
— you’ll feel faster while, at best, delivering at the
same rate. With the latency effect, you’ll deliver
less, rather than more.

Andy Palmer
Coach, Author, Developer, Mentor,

Advocate, Independent

Antony Marcano
Software Development Leadership Coach

& Consultant, Co-Founder, RiverGlide

Each week, the developers add 5 more items to the
queue. By the end of the third week, we end up with
30 items of work in progress: 15 queueing up for
testing in addition to the other 15 items of work in
progress.

This pushes the cycle-time out even more:

Now the cycle time is at 3 weeks per work item. And
so the process continues, with ever increasing cycle
time.
It is for similar reasons that, in some Scrum teams,
we see coding happening in one sprint and testing a
sprint behind. The result is that testing falls further
and further behind.
To make things worse — throughput likely reduces,
resulting in fewer features than before. This is
largely due to the Latency Effect…

THE LATENCY EFFECT

As the cycle-time per item of work increases,
the feedback loop lengthens. When the team was
flowing, the developers were receiving feedback
from the testers soon after they completed their
work. Now, the latency between the testers
providing feedback has increased. The developer
has moved on by several backlog items.
The developer needs to reload the context from
days, or even weeks, ago. The further in the past
this work is, the longer it will take the developer
to reload this context to then diagnose the cause of
any defect and incorporate any feedback.

WHAT CAN YOU DO?

Instead of pulling more and more work in, what
could the team have done to avoid the ready-for-
testing queue? Simple, use the spare capacity to
address why that queue was needed at all…

Are lots of defects being found, causing the testers
to spend more time investigating and reproducing
them? Can we get the testers involved earlier? Can
any predictable tests be discussed, agreed and
automated during development so developers can
ensure the code passes those before any end-of-
process testing happens?

30 ÷ 10 = 3 weeks

31

innovation events
engineering training

Product Vision
Design Sprints

Consulting, Coaching, Training &
Expertise Integration for

Agile Quality Practices

Agile Transformation &
Scaling Agile

Requirements & Backlog Re�nement

Software Testing (Automation,
Mobile, Performance, Security)

Arti�cial Intelligence (Applications,
Data Services, Testing)

Agile Testing Days
Community Meetups

trendig.com

your leading
technology services provider

32

3 Lens Quality
Coach Model

Author: Anne-Marie Charrett

The Quality Coach model is a product development approach that emphasises
quality as a team activity, rather than a role. With the recognition that

software testing is a skilled activity that many teams lack proficiency in,
quality coaches help these teams improve their testing as well as their overall

quality. A quality coach enables quality as opposed to owning quality.

Figure 1 3 Lens Quality Coach Model

33

The Quality Coach model works well when an
organisation views quality through three lenses1.
They are:
1.	 Organisational lens: These are the structures

and models required for the team to exist within
an organisation’s construct.

2.	 Team lens: At a team level, how a team prevents,
detects and recovers. How teams build quality
products.

3.	 Quality coach lens: how to coach teams and
individuals, how to think about quality,

By framing how quality operates through these
three lenses, you ensure you have considered the
impact of any changes through the eyes of a quality

coach, the teams, and the entire organisation.
There’s a significant amount of context to consider.
Here are some questions to ask yourself, your team
and your organisation. You don’t have to answer
all of these, but it’s worth thinking them through
with engineering leadership so they understand the
potential impacts this model will have, from hiring
to support.

Organisation Structures
The essence of the quality coach model is to shift
ownership of quality to everyone in product
engineering, rather than allocating it to a single
role. This requires more than a quality professional
to adapt, but also teams and organisations.

Structure Considerations

Current Company
Structure

What are the Company Values? How big is the company? Maturity of
Company (startup, scaleup, enterprise)

Current Company
Structure

What is the current company structure? Which other practices will you
align with (delivery, SRE, engineering)? What might need modifying to
accommodate the quality coach model? Do Quality professionals exist in
teams? How will they transition? Team Topologies: Are there stream-aligned
teams? Enablement teams? Platform teams? What will you be? How will you
structure product focus versus technical focus?

Enablement Team
Structure

Will you be solely a technical enablement team? Will you work in isolation
with other enablement teams or collaborate with them? How will you maintain
frameworks and tooling? How will teams access your frameworks and example
tests? What technical tooling will you be delivering?

Practice or Guild
Will you have a guild or a practice where quality coaches can gather and learn
from one another? Will they report to the quality practice, or will their manager
be within a squad? What is the aim of the practice? What is it accountable for?

Operating models

How will you interact with feature teams? Will you wait for a request? Or
will you perform audits and track progress? What other practices will you
collaborate with? Do you need an operating model for them? How will the
operating models impact roles and responsibilities?

1: The three lenses are a concept from LifeLabs Learning, which provides training and resources for leadership and team development.

The lenses help teams and organisations to view their work from different perspectives, ensuring a holistic approach to problem-

solving and improvement: lifelabslearning.com

lifelabslearning.com

34

Process Area Considerations

Hiring Process What will the hiring process look like for new engineers and quality coaches?

Onboarding
Process

What new information do quality coaches need during onboarding?
What do engineers need to learn about owning software testing?
What tools do they need to be taught?
What self-service product knowledge can be made available to all new hires
under the product?

Transition Process

What is the current state? What will be the end state?
What does success look like, and how will you track it?
How will you get from the current state to the end state? (What’s your strategy
and roadmap?)
What change management tasks do you need to ensure you do?
Will you utilise the ADKAR change management model, or does the company
have an established method for handling change?
Who is currently managing existing quality professionals? Who should manage
them?

Area Considerations

Informed
Who wants to know the state of the product’s quality?
How often should you catch up?
How will you keep people informed? Through reports? Videos?
How will you share success stories?

INTERACTING WITH TEAMS/PRACTICES

Interpersonal considerations are the people and groups with which the Quality Coach model interacts. For
example, Quality Coaches, Software Engineers, Engineering Leadership, Product Managers, Designers,
Practice Leads. Consider the following questions:

Roles &
Responsibilities

Who is responsible for the elements of quality? What roles need modifying?
Will software engineers need to have software testing included in their role?
How will they transition those roles? What impact does this have on career
paths? Career Growth?

Job Descriptions

What will the job descriptions look like? Will software engineering job
descriptions include software testing? What other activities and tasks will they
be taking on? What HR considerations do you need to make when changing
anyone’s role?

35

Informed

Who will the Quality Coaches report progress to?
What information sessions will you need to hold?
Who do you need to keep informed about the transition process?
Who should be informed about quality improvements?
Who needs to keep you informed?
What do you want to be informed about?

Consulted
Who do you need to consult to develop structures and processes?
Who will be impacted by the quality coach model?
Who will want to have input into how quality operates?
Who should you consult? Who has influence?

Product Teams

What product teams will you be working with? How many? Are they value
stream teams or platform teams?
What skills do software engineers have? Do they understand they are
responsible for quality?
What training will they need?
Will you audit teams?
Will you coach or direct?
How will you decide how to interact with teams?
Does the team have a whole-team approach to quality? If not, how do they
manage quality? Is it working? What needs improving?
Do the product teams know what success looks like? How will you begin
coaching them on what good looks like?
How will you split up quality ownership among teams? What are they
responsible for? What are you responsible for? How will you go about
working that out?
How will you incorporate and involve product engineering in your decision-
making?

Practices

What practices will you be collaborating with? Engineering? SRE?
Delivery? Security?
How do you plan to work together?
How can they build quality into their ways of working? How can you help
other practices?
What can you collaborate on?
What can you learn from them?
What tooling are they using?
What ways of working, operating models and structures do they use?

36

Quality Practice Considerations

Career Path

How do you begin your career path? Where can it lead?
What levels of Quality Coach will exist?
What roles and levels can you compare a quality coach role to? Who within
the organisation should you involve?
Who will manage the quality coaches, engineering managers or the director
of quality engineering?
What are the reporting lines?

Training Plan

What training needs to be given to quality professionals to shift to the
Quality Coach role?
What training do the teams need?
Who will do the training? Is it internal or external, or both?
Do you need an additional budget for training? Who will provide that?

Job Descriptions

What skill sets are required?
Will you train up or hire in?
What does the job description look like for each level of Quality Coach?
Will there be a difference between a Technical Quality Coach and a Product
Quality Coach?
Will there be a different job description? How can quality coaches switch
between the roles?

Quality Coach
Practice

What will the team structure look like?
Who is responsible for what within the quality practice?
What are you responsible for as opposed to what the team is responsible for?
Test Environments, Test data, Frameworks.
How many quality coaches will you need? Now, and in the future?
What’s your operating model?
How will you interact with teams?
How will you measure success?

QUALITY PRACTICE STRUCTURE

Quality Coaches may or may not be part of teams. Regardless of where they sit, a centralised practice is
required to develop a systematic approach. This will help Quality Coaches have a centralised library of
material and tooling, as well as build consistency of approach across teams. Consider the following:

37

Sensible Defaults

Product Quality End State
Quality Attributes for a product and/or a service
Key risk areas for the company
List of recommended tooling that quality practice supports
Test data strategy, test environment strategy, test automation strategy
Company-Wide Quality Strategy
Quality Rituals & Practices you want teams to embrace (Risk Storming,
Contract Testing etc.)

Principles

Company Principles: What are the company’s principles? How do they
impact quality? How will you incorporate them into your quality practice?
How will you ensure teams understand them?
Quality Principles: What are the quality principles? How will you create
them? Who should be involved in creating them? How will you ensure they
are adopted by teams?
Architecture & Engineering Principles: What engineering principles will
impact quality? How will quality coaches contribute to the conversation?
Product and Design Principles: What principles in product and design
exist? How can you incorporate quality into them?

Anne-Marie Charrett
Consultant

@Testing Times

38

How I build my own
GenAI test data
generator
Author: Stephan Dreher

Motivation
Are you familiar with the problem of generating and permuting test
data to achieve a large and preferably comprehensive range of data for
the software under test?

Testers with developer skills often build test data generators using
languages such as Python, which makes this very simple and for which
you can find many excellent libraries worldwide.

However, testers without programming skills usually must seek
assistance from the development team. I have always been bothered
by this in my career. That’s the reason I have become a (test) data
engineer myself over the years.

Test data generator
I use the Replit development platform4 to create my own test data
generator with the help of the AI Assistant. My open-source project is
written in Python. You can find it on GitHub5.

Replit is a tool that lets you develop things in the cloud. It also has
a very powerful AI Assistant. Here's a prompt to get you started on

Stephan Dreher
Consultant & Quality Coach

@ ORBIT IT Solutions GmbH

39

creating the app:

“Design a test data generator with a GUI frontend
to prompt data specification that could be used
for a web portal. Typical data specifications
are username, password, street, city, zip code,
country and more. User should be able to
permutate inputs randomly“

First results were quite buggy, and it takes a few hours debugging
until GUI and features were in the right place.

Features

A test data generator developed in Python has a user interface that
enables the specification and random permutation of web portal user
data. The Test Data Generator is a tool for creating synthetic test
data for web portals and applications. It offers the following main
functions:

•	 Flexible data generation with customisable fields and formats
•	 Field configuration: parameters for each field (e.g. password length, etc.)
•	 Data export: export generated data as CSV or JSON
•	 Database connection: configurations for reuse
•	 Multilingual Support for different formats

The test data generator was developed with the following libraries:

•	 Streamlit: User interface and application framework
•	 Pandas: data processing and manipulation
•	 Faker: Generation of synthetic data
•	 SQLAlchemy: Database interaction
•	 PostgreSQL: Persistent storage of configurations

40

Features:

1.	 The number of test data records to be generated can be entered
here. Currently the maximum is 10000, but this is due to the
limitation of the computing power and the underlying DB. 10k is
usually sufficient.

2.	 Different country templates can be used (DE, JP, US, CH, etc.).
3.	 The random seed helps with the permutation of the data (details

at Faker1).
4.	 Export formats are CSV, JSON or SQL.
5.	 The fields can be selected here. The selection is purely arbitrary

and can be customised very easily.
6.	 To keep it simple, I only generate test data with name and address

(sorry GUI still mixed languages DE and EN).

The data is displayed in a preview and can then be downloaded in the
selected format.

The selected configuration can also be saved for reuse.

Start generating
This first prototype is not designed for a fully developed user interface
but is merely intended to show how easy it is to create such a tool.

41

Conclusion
Whether you generate test data scripts using ChatGPT or other GPTs or
even create a web app using Replit certainly depends on the situation
(time, money, knowledge).

Nevertheless, the new AI assistants offer wide advantages for testers
when generating test data. AI assistants, Python libraries such as
Faker1 or medical research tools such as ARX7 also help with the
anonymisation and design of existing test data sets.

TEST DATA PROTECTION

An important aspect is certainly data protection and compliance with
the GDPR. The test data to be used should be classified and a strategy
should then be considered to avoid GDPR-violations (red).

Here are some tips for making information anonymous or
pseudonymous. It is said that the best way to do this is to use test data
that has been created by ai (green).

However, anonymised data may no longer be consistent and therefore
no longer usable. In this case, compromises in data protection must be
compensated for by pseudonymisation measures (yellow).

Links

[1] Faker Library: faker.readthedocs.io/en/master

[2] Vibe coding: de.wikipedia.org/wiki/Vibe_Coding

[3] OpenAi ChatGPT: chatgpt.com

[4] Replit: replit.com

[5] DataGenPrototype: github.com/stdreher/DataGenPrototype

[6] Pytest: docs.pytest.org/en/stable

[7] Werkzeug ARX: arx.deidentifier.org

https://faker.readthedocs.io/en/master/
https://de.wikipedia.org/wiki/Vibe_Coding
chatgpt.com
replit.com
https://github.com/stdreher/DataGenPrototype
https://docs.pytest.org/en/stable/
arx.deidentifier.org/

42

You often can't use US cloud IDEs like Replit4 directly in projects in
Germany because of known compliance reasons. However, apps
created with them, which have simple, transparent and traceable
code structures and which meet data protection requirements (self-
hosted), can be used to generate neutral, anonymous test data.

OPEN SOURCE

I like open-source tools that use the Python programming language.
Python is a powerful language for processing data and has many well-
written packages. It's no surprise that Python is the go-to language
for many AI projects. The community is also very friendly and active.

VIBE CODING

Vibe coding platforms in Germany are becoming more popular and are
also necessary. There is a high demand for so-called lay developers
(citizen developers), but this is also a controversial topic in the
development community. QA will certainly have to make sure that the
quality is good in the future.

AI CAN HELP US, BUT IT CANNOT REPLACE US.

AI assistance will not replace human testers soon, but it will change
the profession a lot. All testers need more training.

Generated with ChatGPT

43

hands-on training
AiU Certified

GenAI-Assisted
Test Engineer

AI-Assisted Testing Introduction

Prompt Engineering

Requirements Review

Test Generation and Optimization

Test Data Generation

Bug Advocacy

Future Possibilities

What you’ll learn:

trendig.com

